

Does dockless bikesharing create a competition for losers?

Hongyu Zheng¹, Kenan Zhang², and Yu (Marco) Nie¹

Department of Civil and Environmental Engineering, Northwestern University School of Architecture, Civil and Environmental Engineering (ENAC), École polytechnique fédérale de Lausanne (EPFL)

Introduction

Benefits of dockless bikesharing (DLB) system:

Healthy, environment friendly, affordable, flexible.

Spectacular rise since 2015

- Fleet size grew 10,000 folds in 2.5 years in China.
- Ridership reached 70 million per day in 2018.

Regulation challenges

- Low entry barrier: nasty pricing wars/massive oversupply.
- Operators struggled to properly maintain and position their fleets.
- Consumed too much public space.

Our contributions

- ☐ Propose a dynamic game framework to model the **inter-operator competition**.
- ☐ Explain why the unregulated DLB market is often oversupplied and prone to collapse under competition.
- ☐ Design an effective policy to avoid the market failure.

Dynamic game of oligopoly competition

Game: $M(\mathbb{I}, \mathbb{S}, \mathbb{T}_i|_{i \in \mathbb{I}}, u_i|_{i \in \mathbb{I}})$, Operator set: $\mathbb{I} = \{1, 2, ..., I\}$

<u>Upper level (multi-objective optimization)</u>

- Each operator i chooses an **action** $s_i \in \mathbb{S} = \{S_1, ..., S_K\}$.
- Each s_i is tied to an objective, e.g., maximizing profit.
- Operator i's set of objectives is $\mathbb{T}_i = \{T_{i1}, \dots, T_{iK}\}.$
- Vector-valued payoff function $u_i: \mathbb{S}^{|\mathbb{I}|} \to \mathbb{R}^{|\mathbb{S}|}$.
- With action profile $\mathbf{s} = \{s_i, s_{-i}\}$, the payoff vector $\mathbf{t}_i = u_i(\mathbf{s}) = [t_{i1}, \dots, t_{iK}]$, is determined in the lower level.

Lower level (Subgame perfect Nash equilibrium)

- Each operator i chooses tactics y_i to maximize the objective associated with its chosen upper-level action.
 - $y_i = [B_i, f_i], B_i$: Fleet size, f_i : Fare rate (¥/km)
 - Proper decision: $\mathbf{y}_i \in \mathbb{Y}_0$ if $f_i \in [0, \Gamma_f]$, $B_i \in [0, \Gamma_B]$
- Operator *i*'s decision problem:

$$\max_{\mathbf{y}_i \in \mathbb{Y}_0} T_{ik}(\mathbf{y}_i, \mathbf{y}_{-i}) \Big|_{\mathbf{s}_i = S_k}$$

s.t. Equilibrium constraints, Operational requirements.

• General Nash equilibrium (GNE):

$$T_{ik}(y_i^*, y_{-i}^*) \ge T_{ik}(y_i, y_{-i}^*), \forall y_i \in \Omega_i(y_{-i}^*), \forall i \in \mathbb{I}.$$

 The GNE can be solved using a Bi-level Dual Gradient Descent (BDGD) algorithm, please see the full paper for more details.

Nash equilibrium of the dynamic game

Definition 1:

Given s_{-i} and $s_i = S_k$. Let $t_i = u_i(s)$ and $t'_i = u_i(s')$ where $s = \{s_i, s_{-i}\}, s' = \{s'_i, s_{-i}\}$. If $t_{ik} \ge t'_{ik}, \forall s'_i \ne s_i$, we say s_i is a **consistent action** for operator i given s_{-i} .

Definition 2:

Given s_{-i} . Let $t_i = u_i(s)$ and $t'_i = u_i(s')$ where $s = \{s_i, s_{-i}\}, s' = \{s'_i, s_{-i}\}$. If, $\forall s'_i \neq s_i$, we have $t_{ik} \geq t'_{ik}$, $\forall k = 1, ..., K$ and at least one inequality holds strictly, then s_i is a **dominant action** for operator i given s_{-i} .

Definition 3: Given an oligopoly game $M(\mathbb{I}, \mathbb{S}, \mathbb{T}_i|_{i\in\mathbb{I}}, u_i|_{i\in\mathbb{I}})$, an action profile s is a **Nash equilibrium under weak preference (NEWP) / under strong preference (NESP)** if for $\forall i \in \mathbb{I}, s_i$ is a consistent/strong action given $\forall s_{-i}$.

- NEWP ensures that every operator is content with its chosen action (still with flexibility to change).
- No one will change its action in an NESP (more stable).

Demand-supply equilibrium of a DLB market

Fig.1 Bikesharing market with I operators.

Fig.2 Mode split by trip length.

<u>Demand</u>

- Travel cost:
- Walking: $c_w = \frac{\mu}{v_w} l$
- Biking via DLB: $c_b = \left(f + \frac{\mu}{v_h}\right)l + \mu a$
- Driving (motorized modes): $c_d = \left(f + \frac{\mu}{v_d}\right)l + \tau$

Total demand for biking: $Q = \bar{Q}(G(\bar{l}) - G(\underline{l}))$ Ridership of Operator i: $Q_i = \frac{n_i}{\sum_{i \in \mathbb{I}} n_i} Q - \sum_{j \in -i} k_{ij} (f_i - f_j)$

- n_i : #idle bikes of Operator i.
- k_{ij} : competition factor, which captures the amount of ridership shifted between Operator i and j.

Supply

The conservation of total bike time:

$$n_i + \frac{1}{v_b} \frac{Q_{\rm i}}{Q} \overline{Q} \int_{\underline{l}}^{\overline{l}} x \mathrm{d}G(x) + \alpha \frac{L_i}{v_r} Q_i = B_i$$
 Total parking time of idle bikes Total trip duration of occupied bikes time

Average trip fare

$$f = \frac{\sum_{i \in \mathbb{I}} Q_i f_i}{\sum_{i \in \mathbb{I}} Q_i}$$

Access time a

$$a = \frac{\delta}{v_w} \sqrt{\frac{A}{\tilde{n}}}$$

 δ : parameter determined by city's geometry

- *A*: the area of city
- \tilde{n} : #unique bike locations
- its density is a function of the density of idle bikes, i.e., $\frac{\tilde{n}}{A} = z\left(\frac{\sum_{i \in \mathbb{I}} n_i}{A}\right)$, which is calibrated in Zheng et al. (2023)

Rebalancing

- Each bike trip on average generates α rebalancing trips.
- Please refer to Zheng et al. (2023) for the calculate method of average rebalancing distance.

<u>Performance</u>

- Profit = Revenue Property cost Rebalancing cost.
- Social welfare = system cost without DLB system cost with DLB

Case study

Data

Full sampled DLB trip records from a large DLB operator in the city center of Chengdu, China (43 days, 15,349,358 trips in total)

- #DLB bikes: 1.1 million (09/2018).
- Fleet cap: 0.6 million (05/2019); 0.45 million (05/2020).

Fig.3 Chengdu's city center (colored area) considered for the case study.

Game settings

- Action set $S = \{p, r\}$, where p is profit-maximization and r is ridership-maximization with a profit target $\overline{\Pi_i}$.
- Operator set $\mathbb{I} = \{1, 2\}$

Outcomes of a DLB duopoly competition

- Market always settles at the only NESP. No rational operator will unilaterally commit to profit maximization.
- Performance: zero profit, low social welfare.

Table 1: System performance. In each cell, the first and second rows report the payoff vectors for Operator 1 and 2, respectively, where the first/second element is its profit $(\frac{1}{2} hr)/ridership$ (trips/hr), and the third row reports social welfare ($\frac{1}{2} hr$).

Role of regulation

 Fleet cap can avoid the market failure and improve social welfare and profitability.

Table 2: System performance in a duopoly dynamic game with a fleet cap = 61803 for each operator.

Sensitivity of profitability to the number of operators

• A relatively mature market with profit-maximizing operators.

Fig. 4 System performance metrics in an oligopoly market with different numbers of profit-maximizing operators.

Takeaway messages

- ➢ If one DLB operator wants to dominate the market, the others must do the same.
- Fleet cap can avoid the trap in which everyone is competing to lose more money.
- Profit plunges with #operators if focusing on making money.

References: Zheng H., Zhang K., Nie Y., Yan P., and Qu Y. (2023). How many are too many? Analyzing dockless bikesharing systems with a parsimonious model. Transportation Science, O(0). Published online.