Does dockless bike-sharing create a competition for losers?

Hongyu Zheng¹, Kenan Zhang², and Yu (Marco) Nie^{*1}

¹Department of Civil and Environmental Engineering, Northwestern University 2145 Sheridan Road, Evanston, IL 60208, USA ²ENAC, EPFL, Station 18, Laussane, 1015, Switzerland

December 19, 2023

Abstract

We model the oligopoly competition in a dockless bike-sharing (DLB) market as a dynamic game. Each DLB operator is first committed to an action tied to a specific objective, such as maximizing profit. Then, the operators play a lower-level game to reach a subgame perfect Nash equilibrium, by making tactic decisions (e.g., pricing and fleet sizing). We define a Nash equilibrium under either weak or strong preference to characterize the likely outcomes of the dynamic game, and formulate the demand-supply equilibrium of a DLB market that accounts for key operational features and mode choice. Using the oligopoly game model calibrated with empirical data, we show that, if an operator seeks to maximize its market share with a budget constraint, all other operators must either respond in kind or be driven out of the market. When all operators compete for market dominance, even a slight efficiency edge gained by one operator can significantly shift the outcome, which signals high volatility. Moreover, even if all operators agree to focus on making money rather than ruinously seeking dominance, profitability still plunges quickly with the number of operators. Taken together, the results explain why an unregulated DLB market is often oversupplied and prone to collapse under competition. We also show this market failure may be prevented by a fleet cap regulation, which sets an upper limit on each operator's fleet size.

Keywords: dockless bike-sharing, Nash equilibrium, oligopoly competition, fleet cap

1 Introduction

As a novel mode for short-distance travel, bike-sharing has gained traction in densely populated urban areas in recent years. Compared to driving, biking is cheaper, healthier, and greener (Shaheen et al., 2010). Bike-sharing offers a cost-effective solution to the first and last-mile problem that often inconveniences transit riders (Chen et al., 2020). In addition to promoting public transportation, bike-sharing also can directly replace certain motorized trips. As it promises to reduce vehicular traffic and mitigate environmental externalities (Fishman, 2016), bike-sharing has been

^{*}Corresponding author, E-mail: y-nie@northwestern.edu; Phone: 1-847-467-0502.

heralded by many as a key ingredient in a multimodal transportation system that supports the Complete and Green Streets Initiative (Jordan and Ivey, 2021). Despite its appeal, however, the mass adoption of bike-sharing was hindered by the need to procure customized bikes and build stations and docks that secure them. Shaheen et al. (2014) noted that a bike station can cost as much as \$40,000 and adding a dock costs another \$3,000. Such a high infrastructure cost restricts the spatial coverage of these docked bike-sharing systems and serves as a natural entry barrier to would-be contenders.

Dockless bike-sharing (DLB) technology fundamentally altered this calculus (Fishman, 2016). First, a DLB system enhances user experience markedly, by enabling riders to locate and unlock a GPS-equipped bike using their smartphones, and to lock it away wherever they find most convenient. Second, not only does this technology eliminate the need for a supporting infrastructure, but it also provides novel access to a potentially large consumer base. These desirable properties first caught the attention of venture capitalists in China and, starting from early 2015, they began to pour money into the nascent industry (Yang, 2020). The result was a breathtaking expansion that culminated in 2017, when 221 million registered users completed nearly 70 million trips per day in China. At the peak, there were nearly seventy bike-sharing startups collectively holding 23 million bikes nationwide (Gu et al., 2019). The two unicorns produced by the industry, Ofo and Mobike, launched ambitious plans to conquer international markets, and at one point their bikes can be found on most continents around the world (Borak, 2017).

The tide began to turn in 2018, however. In some way, the industry was the victim of its own success. The complete freedom the technology gives customers to retrieve and return bikes has an unintended consequence: bikes were literally everywhere, including on the way of pedestrians (Spinney and Lin, 2018). The problem was exacerbated by the low cost of entry, as starting a DLB operation in a city requires virtually zero infrastructure investment. The intense competition led to massive supply expansion and then nasty price wars. In August 2017, for example, Ofo charged \$1 *per month* for unlimited rides (Yang, 2020). In comparison, a single transit ride typically costs \$2 in China. While the public no doubt enjoyed the "free lunch" with some amusement, most startups did not have the resources to sustain the heavy losses ensued. Even the deep-pocketed players like Ofo could no longer properly look after their massive fleets. As a result, more and more bikes, broken or otherwise, were left unattended, cluttering sidewalks and other public spaces, sometimes like a giant pile of trash (Jing, 2019). By 2018, the outcry became so loud that Chinese cities had to crack down on the industry with regulations that cap the total number of DLB bikes. Soon after, most startups began to fail (Kubota, 2018). Even Ofo and Mobike did not survive the crash.

The rise and fall of the DLB industry in China offers a cautionary tale about the risks of an unregulated market with a low entry barrier. It is well known that, while low entry barriers can promote competition and innovation, they may also lead to higher market volatility and potential challenges in achieving profitability due to intensified rivalry (Porter, 1980). There are also limited economies of scale to be had, making it exceedingly difficult to establish a monopoly. As Thiel and Masters (2014) noted, "competition is for losers" in such markets and good entrepreneurs should simply stay away from them.¹ However, writing off the DLB industry as

¹The point is that a market with hyper competition is no place to make money. Thiel's favorite example is the restaurant industry, which features intense competition, low entry barriers, and a high failure rate.

unprofitable cannot be the only story here. After all, bike-sharing has a genuinely positive societal impact and should have its place in many of our cities that are haunted by the disease of auto-dependency. The question is *what*, *if anything*, *can be done to foster a healthy bike-sharing market that is attractive to both users and private investors*.

There is evidence that the regulations on bike-sharing in China, hastily enacted to rein in the out-of-control growth, may be sub-optimal. Take Chengdu, China for example. The number of shared bikes in the city center, which amounts to less than five million residents, peaked at 1.1 million in September 2018. Chengdu then introduced a fleet cap of 600,000 in May 2019 and further reduced it to 450,000 a year later.² This might seem like a huge improvement. However, using a stylized model calibrated with real data collected in the city, Zheng et al. (2023) estimated that, even if the DLB market is centrally controlled for social good, the current cap is still not effective and should be further reduced by another three quarters. If there is a monopoly operator aiming at profit, the optimal fleet size is less than 60,000 bikes, which is, unsurprisingly, accompanied by a lower level of service and a much higher price. Could the city achieve a better outcome by introducing regulated competition? Indeed, Chengdu did exactly that: issuing a few licenses and allocating a fleet quota to each licensed operator. However, to the best of our knowledge, no analysis exists that can tell, supported by empirical evidence, whether that is the optimal way to regulate the competition, or how far the number of licenses and the quota are from the "optimal" values. The model developed by Zheng et al. (2023) is not suitable for this task either because it does not allow for competition.

This study sets out to build an oligopoly version of Zheng et al. (2023)'s model. The competition is formulated as a dynamic game, in which each operator is first committed to an action tied to a specific objective and then makes tactic decisions to achieve it. At the upper level, their actions involve setting the target of operations, which may be either making money (profit maximization) or dominating the market (ridership maximization). Typically, the latter is viewed as a (necessary) stepping stone to the former. To analyze how competition may shape the choice of actions, we define a Nash equilibrium under either weak or strong preference to characterize the likely outcomes of the dynamic game. At the lower level, the tactics include both the pricing and the fleet sizing decisions to achieve the objective associated with the action. Note that the operator's payoffs for the action and tactic decisions are deeply intertwined with each other. Like the taxi market (Douglas, 1972), this interaction is further complicated by the fact that the perceived level of service and price level are often determined by the supply decisions of all operators collectively rather than that of each operator individually. The case in point is the access time perceived by a user, which depends on the total number of idle bikes in a city, rather than any single operator's fleet size. In the case where the ridership-maximizing operator has a budget constraint, its feasible set of tactics becomes influenced by the competitor's decisions. This leads to a generalized Nash equilibrium (GNE) as the outcome of the lower-level game. Therefore, a bi-level dual gradient descent (BDGD) algorithm is developed to find a GNE given upper-level decisions.

Based on the model calibrated with empirical data, we explain why the unregulated DLB market is often oversupplied and prone to collapse under competition. The underlying mecha-

²http://jtys.chengdu.gov.cn/cdjt/c108497/2020-05/29/content_a019aa4bd8e848f89dbd30c246928186. shtml, in Chinese.

nism is simple: if an operator is committed to market dominance, other operators must respond in kind. Otherwise, they would be driven out of the market. Our analysis will also show the DLB market need not always fail. An effective policy instrument is fleet cap, which sets an upper limit on each operator's fleet size. If properly implemented, the policy can both prevent market failure and improve social welfare.

The rest of the paper is organized as follows. Section 2 provides a brief review of related studies and summarizes their relationship with the present work. The oligopoly competition game is introduced and analyzed in Section 3. Section 4 formulates the demand-supply equilibrium for a DLB market with multiple operators and presents several analytical results. Section 5 presents the numerical procedure to solve the GNE of the competition game. Section 6 describes a case study based on a Chinese megacity with a well-developed DLB market. Section 7 reports the results from a set of hypothetical scenarios and discusses their implications. Section 8 summarizes the main findings and comments on future research.

2 Related studies

The rapidly expanding literature on bike-sharing can be generally categorized into descriptive and prescriptive studies. Descriptive research involves identifying patterns and deriving insights from the operational data of established bike-sharing systems, with the primary goal of understanding and interpreting the behaviors of bike users. In contrast, prescriptive research mainly addresses the strategies for designing and operating bike-sharing systems according to such goals as efficiency, market share, and service levels. Our work falls into the second category. The vast majority of the prescriptive studies cast the bike-sharing system as a network model, thereby treating bike trips as flows in a network of bike stations. Importantly, bike flow is determined not only by demand but also by spatiotemporal availability of bikes and vacant docks at stations. The latter, in turn, is affected by a host of strategic, tactical, and operational decisions whose optimization chiefly concerns these studies. Despite their popularity, network-based models are complex and computationally demanding, making them unsuitable for our purpose, namely to represent the competition between multiple operators and to analyze the impact of different regulatory policies. There has been a growing interest recently in more aggregated models of bike-sharing systems. Because these studies are more directly related to ours, they will be discussed in greater detail in the rest of this section. Those who wish to read a more comprehensive review of bike-sharing may consult Laporte et al. (2018); Chen et al. (2020); Shui and Szeto (2020).

2.1 Monopolistic market

Chen et al. (2019) studied an idealized bike-sharing monopoly in which users can choose between bike-sharing and a generic travel mode, and the operator aims to maximize profit by setting the price and availability of bike-sharing (represented by α , or the probability of finding a functional bike within a reasonable distance). The operator's cost solely depends on availability — formulated as a simple quadratic function of α — but can be reduced by a government subsidy. The focus of the analysis is to examine how the availability function interacts with the subsidy policy. They found subsidization is not effective for enhancing social welfare when the availability cost is high. Considering stochastic demand sequences over time, Freund et al. (2022) developed a model to optimize the dock capacity of each bike-sharing station. The goal was to minimize the occurrence of out-of-stock events when travelers attempt to rent or return a bike. They demonstrated that the objective function in their model is multimodular and the design problem can be solved effectively using a discrete gradient-descent algorithm. Using a structural demand model, Kabra et al. (2020) estimated the elasticity of bike-sharing ridership to station accessibility and availability of idle bikes. They also demonstrated how these estimates can be used to evaluate different improvement strategies. In a sequel, He et al. (2021) extended the analysis by Kabra et al. (2020) to examine the impact of network effects on bike-sharing demand and to evaluate expansion strategies.

Soriguera and Jiménez-Meroño (2020) developed a continuous approximation model for the design of a bike-sharing system. As in strategic transit design, the total cost, inclusive of both the user cost and the operator cost, is minimized to determine design variables, which in the case of bike-sharing include station density, fleet size, and rebalancing intensity. Their modeling approach does not allow mode choice but can accommodate both docked and dockless systems, as well as regular and electric bikes. Using the model, the authors demonstrated that bike-sharing systems enjoy economies of scale. In a similar vein, Jara-Díaz et al. (2022) studied the design of a bike-sharing system, which is, in the basic form, configured over a grid network by station space, the number of stations, the number of docks, and fleet size. The more advanced version of their model allows for "waiting time" as a function of the average availability of bikes (at origin) and docks (at destination), as well as rebalancing, which is linked to a reduction in the waiting time and an increase in the operator's cost as a result of moving bikes from oversaturated stations to empty ones. They too observed economies of scale in the system, and argued that bike-sharing should be subsidized — the larger the city, the greater the subsidy.

Zheng et al. (2023) assumed a bike-sharing service provided by a monopolistic operator competes for customers with walking and a generic motorized mode. The model choice is largely driven by trip length, but can also be influenced by the operator's decision of fare and fleet size — the latter dictates the access time, or the walking time taken to reach the nearest bike location. The cost of rebalancing is simplified as the function of an exogenous variable, determined by the empirically observed ratio between the number of bike trips and that of rebalancing trips. Calibrated with empirical data collected in Chengdu, China, their model indicated the level of service of bike-sharing has rapidly diminishing returns to the investment on the fleet. This leads to the conclusion that the current fleet cap set by Chengdu is well above the optimal level. They also found that, for a regulator seeking to influence bike-sharing operations for social good, the choice of policy instruments depends on the operator's objective.

2.2 Competitive market

Jiang et al. (2020) divided a service area into zones and an analysis horizon into multiple periods. Bike-sharing operation is then organized to serve endogenously given stochastic bike trips connecting pairs of zones in each period. Travelers may choose from one of two competing operators but have no access to other modes (mode choice may be implicitly captured using a demand function, as demonstrated in the paper). As an operator's market share in a zone is determined by its share of bike supply in that zone, the key decision is periodic rebalancing, which dictates how many bikes need to be moved between zones at the end of each period, after the initial distribution of bikes in the network is altered by bike trips realized in the period. For either operator, this decision problem is formulated as a multi-period two-stage stochastic program, and the authors assume inter-operator competition would lead to a Nash equilibrium. Given the complexity of the model, the operator's problem was solved (to a local optima) using a sample average approximation scheme, and the Nash equilibrium is taken as a stable point of a process in which each operator's problem is solved alternately. Fu et al. (2022) extended the model by Jiang et al. (2020) to consider the situation where the competition is between an incumbent and a newcomer. The authors argued that, because the newcomer cannot hope to reliably obtain information about the incumbent's operations, it should expect the worst when making the market entry decision. Based on this proposition, the authors developed a multi-stage max-min-max robust maximization model to maximize the worst-case revenue achievable by the newcomer. They also proposed a myopic method capable of bounding the potential optimal solution to the problem. In another follow-up study, Jiang and Ouyang (2022) incorporated the operators' dock station location decision into the model as a first-stage decision, along with the fleet size and service price, while rebalancing is considered as a second-stage decision. The duopoly is then modeled as a generalized Nash equilibrium (GNE) problem, which is reformulated as a linear model and solved by commercial solvers.

By inspecting the DLB trip data collected in 59 Chinese cities between 2015 and 2017 (i.e., the initial expanding phase of the industry), Cao et al. (2021) found that a monopolistic incumbent consistently benefits — in the form of greater ridership, high revenue per trip and a higher utilization rate — when a competitor enters the same market. They explained this unexpected finding by a positive network effect, which posits that a newcomer would attract enough new users to benefit the incumbent, by widening the overall availability of bikes, thus the expected probability of finding a bike. In the theoretical model, this positive effect is captured using a Cobb-Douglas matching function that has increasing returns to scale large enough to generate a dominant market-expanding effect. By assuming the investment cost as a convex function of the fleet size, the model prevents the "winner-take-all" outcome. While it is speculated the convexity of the function may be attributed to the "effort to balance and maintain a large and diverse network of bikes", the connection to the physical bike-sharing operation was not explicitly modeled. Nor did the authors separate the rebalancing cost from the capital investment. Wang et al. (2023) built a stylized Hotelling model of a DLB duopoly, in which travelers may subscribe to either service (single-homing) or both (multi-homing), depending on their attributes (abstracted as the location on the Hotelling line). The total demand is fixed and allocated to the three options based on a utility that linearly increases with fleet size and decreases with price. On the supply side, bikes are assumed to have a negative contribution to social welfare, which incentivizes the regulator to limit the fleet size. The focus of the study is to examine three regulatory policies using a game-theoretic approach: a deployment limit (i.e., capping the fleet size for both operators), a multi-homing ban, or both. The results show that the deployment limit produces more social benefits than the multi-homing ban.

2.3 Summary

In summary, of the handful of studies that have considered competition in bike-sharing, few have focused on the industry's vulnerability to intense, potentially destructive competition rooted in its relatively low entry barrier. The empirical study of Cao et al. (2021) was enlightening, but it was motivated by a positive effect of competition, which may well exist in the initial development of the industry, but cannot adequately explain its crash. The discussion of regulations was more scarce. The only exception to the best of our knowledge, Wang et al. (2023), justified the interventions not by the need to curtail wasteful competition, but by an inherently negative externality — captured by an abstract function — that bikes supposedly impose on society. In addition, the underlying modeling approach adopted in these studies uses either a full-blown network-based specification (e.g. Jiang et al., 2020) or a highly stylized construct (e.g. Cao et al., 2021).

The present study strives to fill some of the gaps identified above. Our model, built on Zheng et al. (2023), aims at a balanced approach to the trade-offs between tractability and realism, and between empirical and theoretical investigations. The overarching goal is to explain how unhealthy competition can harm bike-sharing and to search for regulations that can effectively prevent these harms.

3 Game of oligopoly competition

Consider a city of an area *A* served by a set of $\mathbb{I} = \{1, 2, ..., I\}$ DLB operators. The oligopoly market is modeled as a dynamic game with a hierarchy. At the upper level, each operator $i \in \mathbb{I}$ chooses an action $s_i \in \mathbb{S} = \{S_1, ..., S_K\}$ characterized as optimizing a certain objective, such as maximizing ridership or profit. Let $\mathbb{T}_i = \{T_{i1}, ..., T_{iK}\}$ be the set of objectives for operator *i*, with T_{ik} be the objective associated with action S_k . The payoff of the operator *i* is represented as a vector-valued function $u_i : \mathbb{S}^{|\mathbb{I}|} \to \mathbb{R}^{|\mathbb{S}|}$. Specifically, for a given *action profile s*, where $s = \{s_1, ..., s_i, ..., s_I\}$, the payoff vector for operator *i* is $t_i = [t_{i1}, ..., t_{iK}] = u_i(s)$. The payoff vector t_i is determined by the lower-level game, whose output is a subgame perfect Nash equilibrium (Mas-Colell et al., 1995). Specifically, given its upper-level action s_i and those of its competitors, which can be written collectively as $s = (s_i, s_{-i})$ where $s_{-i} = \{s_j\}, \forall j \in \mathbb{I} \setminus i$, the operator chooses tactics y_i to maximize the objective associated with the action chosen at the upper level. The tactics considered in this study include the fleet size (B_i) and fare rate measured by \mathbb{Y} per unit distance (f_i) , i.e., $y_i = [B_i, f_i]$. All operators' tactics are denoted as $y = \{y_i\}$.

We write an oligopoly game of the DLB operators as $M(\mathbb{I}, \mathbb{S}, \mathbb{T}_i|_{i \in \mathbb{I}}, u_i|_{i \in \mathbb{I}})$. In what follows, Section 3.1 defines the Nash equilibrium of the game. Section 3.2 formulates the lower-level game that determines tactics y_i and payoff vector t_i , $\forall i \in \mathbb{I}$ for a given action profile s. Section 3.3 gives an illustrative example.

3.1 Nash equilibrium of the dynamic game

To define equilibrium, we begin by establishing the preference of an operator for actions. This is not trivial because, given the vector-valued payoff function, the operator essentially faces a multi-objective optimization problem (Deb, 2013).

Definition 1 (Weak preference). Given s_{-i} , $s = \{s_i, s_{-i}\}$ and $s' = \{s'_i, s_{-i}\}$, where $s_i = S_k \neq s'_i$. Let $t_i = u_i(s)$, $t'_i = u_i(s')$. We say operator *i* weakly prefers action s_i to action s'_i if $t_{ik} \ge t'_{ik}$, written as $s_i \ge s'_i|_{s_{-i}}$.

Definition 2 (Strong preference). Given s_{-i} , $s = \{s_i, s_{-i}\}$ and $s' = \{s'_i, s_{-i}\}$, where $s_i \neq s'_i$. Let $t_i = u_i(s)$, $t'_i = u_i(s')$. We say operator *i* strongly prefers action s_i to action s'_i if $t_{ik} \ge t'_{ik}$, $\forall k = 1, ..., K$ and at least one inequality holds strictly, written as $s_i \succ s'_i|_{s_i}$.

Definition 3 (Consistent action). If $s_i \succeq s'_i|_{s_{-i}}$, $\forall s'_i \neq s_i$, we say s_i is a consistent action for operator i given s_{-i} .

The intuition behind consistency is that if an operator adopts a particular action, then it should not be able to improve upon the payoff value tied to that action by committing to another action. A consistent action may not exist and when it does, it may not be unique.

We next define the concept of dominant action.

Definition 4 (Dominant action). If $s_i \succ s'_i|_{s_{-i}}$, $\forall s'_i \neq s_i$, we say s_i is a dominant action for operator i given s_{-i} .

When other operators' actions are fixed, the existence of a dominant action means the operator is compelled to choose the action, because it would be worse off when switching to other actions, as dictated by strong preference. The existence of a dominant action implies all other actions are Pareto-dominated by that action, in the terminology of multi-objective optimization (see e.g., Deb, 2013). Clearly, a dominant action may not exist either. However, when it does, it must be unique. Moreover, the following property directly follows from the definition.

Property 1. If s_i is dominant for operator *i* given s_{-i} , then s_i must also be consistent for operator *i* given s_{-i} .

We are now ready to define a Nash equilibrium under weak/strong preference.

Definition 5 (Nash equilibrium). *Given an oligopoly game of the DLB operators* $M(\mathbb{I}, \mathbb{S}, \mathbb{T}_i|_{i \in \mathbb{I}}, u_i|_{i \in \mathbb{I}})$, an action profile s is a Nash equilibrium under weak preference (NEWP), respectively, Nash equilibrium under strong preference (NESP), for the game if for $\forall i \in \mathbb{I}$, s_i is a consistent, respectively, dominant, action given s_{-i} .

NEWP ensures that, given the actions of its competitors, an operator is content with its chosen action, thus having no reason to switch to another action. However, the operator still retains the flexibility to change actions, because other actions could be consistent as well. At NESP, the operator no longer has this luxury because its current action dominates all other actions. In other words, switching to any other actions will make the operator decisively worse off. This contrast implies that NEWP is less stable than NESP, and if an NESP exists, the system is more likely to settle on it than any NEWP state. The following is the direct result of Definition 5.

Property 2. An NESP is also an NEWP.

The oligopoly game and its Nash equilibrium provide a framework within which the DLB market behavior is to be understood and explained. Note that the existence and uniqueness of

Nash equilibrium depend on the payoff vectors emerged from the lower-level game, which itself is built on complicated market dynamics. In Section 3.3 we provide hypothetical examples in which NESP and NWEP co-exist, only one exists, or neither does. The case study (Section 7) will reveal which outcomes are likely to emerge in the real world.

We set out to define the lower-level game next. The demand-supply equilibrium of the DLB market, on which the entire game structure rests, will be discussed in Section 4.

3.2 Lower-level game

Given an action profile s, each operator makes its own tactics y_i , while taking into consideration the market's demand-supply balance and the competitor's tactics. We first formulate how each operator optimizes the objective associated with its action. Before we start, it is worth emphasizing that tactics are chosen to satisfy such natural constraints as non-negativity and finite upper bounds. The upper bound may be interpreted either as a very large number that ensures the compactness of the feasible set or a limit set by government regulations. These considerations give us the notion of *proper decisions*, defined below.

Definition 6 (Proper decision). A decision vector (y_i) is said to be proper, written as $y_i \in \mathbb{Y}_0$, if $f_i \in [0, \Gamma_f]$, $B_i \in [0, \Gamma_B]$, where Γ_f and Γ_B are respectively a finite upper bound on the fare and fleet size.

Note that operator *i*'s payoff is jointly determined by all operators' decisions. Thus, we write the decisions of operator *i*'s opponents as $y_{-i} = [f_{-i}, B_{-i}]$, where $f_{-i} = [f_j]$ and $B_{-i} = [B_j], \forall j \in \mathbb{I} \setminus i$. Given the upper-level action $s_i = S_k$, operator *i*'s decision problem in the lower-level game is formulated as Problem (P1):

$$\max_{\boldsymbol{y}_i \in \mathbb{Y}_0} \quad T_{ik} \left(\boldsymbol{y}_i, \boldsymbol{y}_{-i} \right) |_{s_i = S_k} \tag{P1-a}$$

s.t.
$$\mathbb{E}(\boldsymbol{y}_i, \boldsymbol{y}_{-i}) = \boldsymbol{0},$$
 (P1-b)

$$D_i\left(\boldsymbol{y}_i, \boldsymbol{y}_{-i}\right) \ge 0. \tag{P1-c}$$

where T_{ik} is the objective function for operator *i* corresponding to action S_k , (P1-b) represents the demand-supply equilibrium condition that captures the dynamics of the DLB market, given both *s* and *y* (see Section 4 for details), and (P1-c) captures the operational requirements which operator *i* needs to follow, such as maintaining a minimum level of profit. For convenience and to emphasize the feasible set of (P1) depends on y_{-i} , we shall write it as $\Omega_i(y_{-i})$ hereafter.

The lower-level game reaches a subgame perfect Nash equilibrium when the tactical decision vector y^* satisfies the following equilibrium conditions for a given action profile s

$$T_{ik}\left(\boldsymbol{y}_{i}^{*},\boldsymbol{y}_{-i}^{*}\right) \geq T_{ik}\left(\boldsymbol{y}_{i},\boldsymbol{y}_{-i}^{*}\right), s_{i} = S_{k}, \forall \boldsymbol{y}_{i} \in \Omega_{i}(\boldsymbol{y}_{-i}^{*}), \forall i \in \mathbb{I},$$

$$(2)$$

where y_i^* and y_{-i}^* are the decisions of operators *i* and -i at the equilibrium, respectively.

It is worth noting that Equation (2) characterizes a generalized Nash equilibrium (GNE) because both the operator's objective function and the feasible set of its decisions are affected by its competitors' decisions. Although a GNE may not exist due to this complex interaction, Equation (2) remains a necessary condition for equilibrium (Arrow and Debreu, 1954). We will devise a numerical procedure to find the subgame perfect Nash equilibrium in Section 5, after we specify the demand-supply equilibrium of the DLB market (Section 4).

3.3 Illustrative example

We now illustrate the oligopoly game using a simple example. Consider a duopoly market with two operators, denoted as $\mathbb{I} = \{1,2\}$. The action set $S = \{p,r\}$, where p represents profit maximization and r represents ridership maximization. Accordingly, the set of objectives for operator $i \in \mathbb{I}$ is $\mathbb{T}_i = \{T_{ip}, T_{ir}\}$. Given an action profile s = [r, p], for example, the payoff of operator i = 1, 2 can be written as $[t_{ip}|_{s_1=r,s_2=p}, t_{ir}|_{s_1=r,s_2=p}]$, where $t_{ip}|_{s_1=r,s_2=p}$ and $t_{ir}|_{s_1=r,s_2=p}$ are obtained when Operator 1 maximizes T_{1r} and Operator 2 optimizes T_{2p} , as defined by (P1).

Table 1 showcases the payoff matrix examples in which each cell is associated with an action profile. Take Table 1a as an example, the action profile corresponding to the lower-right cell (both operators choose r) is an NESP: the action r is a dominant action for both operators when the competitor chooses r, since we have (i) given $s_2 = r$, $t_{1p}|_{s_1=r,s_2=r} = 1 > t_{1p}|_{s_1=p,s_2=r} = 0$ and $t_{1r}|_{s_1=r,s_2=r} = 1 > t_{1r}|_{s_1=p,s_2=r} = 0$; and (ii) given $s_1 = r$, $t_{2p}|_{s_1=r,s_2=r} = 1 > t_{2p}|_{s_1=r,s_2=p} = 0$ and $t_{2r}|_{s_1=r,s_2=r} = 1 > t_{2r}|_{s_1=r,s_2=p} = 0$. However, r is no longer a dominant action when the competitor is committed to p. Instead, both p and r are consistent actions for the operator. This can be verified by noting that (i) given $s_2 = p$, $t_{1p}|_{s_1=p,s_2=p} = 1 > t_{1p}|_{s_1=r,s_2=p} = 0$ and $t_{1r}|_{s_1=r,s_2=p} = 1 > t_{1r}|_{s_1=p,s_2=p} = 0$; and (ii) given $s_1 = p$, $t_{2p}|_{s_1=p,s_2=p} = 1 > t_{2p}|_{s_1=r,s_2=p} = 0$ and $t_{2r}|_{s_1=r,s_2=p} = 1 > t_{1r}|_{s_1=p,s_2=p} = 0$; and (ii) given $s_1 = p$, $t_{2p}|_{s_1=p,s_2=p} = 1 > t_{2p}|_{s_1=p,s_2=r} = 0$ and $t_{2r}|_{s_1=p,s_2=r} = 1 > t_{2r}|_{s_1=p,s_2=p} = 0$; and (ii) given $s_1 = p$, $t_{2p}|_{s_1=p,s_2=p} = 1 > t_{2p}|_{s_1=p,s_2=r} = 0$ and $t_{2r}|_{s_1=p,s_2=p} = 1 > t_{2r}|_{s_1=p,s_2=p} = 0$. Since each action in the action profile {p, p} is consistent for the operator, the market reaches NEWP in the upper-left cell.

Table 1: Payoff matrix examples in a duopoly. $\mathbb{I} = \{1,2\}, S = \{p,r\}$. In each cell, the first row reports $[t_{1p}, t_{1r}]$ and the second row report $[t_{2p}, t_{2r}]$. (a) NEWP (upper-left cell) and NESP (lower-right cell) co-exist. (b) All action profiles are NEWP. (c) Neither NEWP nor NESP exists.

We leave it to the reader to verify that all action profiles in Table 1b are NEWP but not NESP, and no action profile in Table 1c is either NEWP or NESP.

4 Demand-supply equilibrium of a dockless bike-sharing market

In this section, we formulate the demand-supply interaction in a dockless bike-sharing (DLB) market with multiple operators. Throughout this section, we shall assume all tactics, namely the fleet size and fare of each operator, are fixed.

The bike-sharing market is situated in a city whose residents can either walk, bike, or drive, as illustrated in Figure 1a. Note that "driving" may be viewed as a composite motor mode that encompasses bus, taxi, or ride-hail. We follow Zheng et al. (2023) to assume

Figure 1: Illustration of a simplified mobility market. (a) bike-sharing market with *I* operators. (b) Mode split by trip length.

Assumption 1. (*i*) Travelers' origin and destination are uniformly distributed in space, and (*ii*) their mode choice is primarily driven by trip length.

Assumption 1-(i) is introduced to avoid the complexities that inevitably come with spatial heterogeneity but are unlikely to change the nature of the oligopoly game. The intuition behind Assumption 1-(ii) is straightforward: biking is not preferred when the trip length is too short or too long (see Figure 1b, a replica from Zheng et al., 2023). In the former case, the time savings are too small to justify the cost, whereas in the latter the time savings are so great that a more expensive but much faster mode (driving) would make more sense than biking. To simplify mode choice, we further introduce the following assumption.

Assumption 2. The total number of travelers choosing biking in the city depends on the average cost of biking.

Note that the average cost of biking, which consists of the average fare and access time (i.e., the time it takes to reach a bike), depends on the collective, rather than individual, tactics of all operators in the DLB market. Assumption 2 is reasonable in our context for the following reasons. First, different DLB services offer similar user experiences in terms of mobility, comfort, and price. In a discrete choice modeling framework, similar alternatives like these are often grouped together to form a nest in a decision tree, and the cost (or utility) of the nest depends on certain collective measures of the costs of the alternatives included in the nest (Ben-Akiva and Lerman, 1985).³ The idea is that the decision-maker would compare the nest with other alternatives as if it represents a single alternative. Our approach here is in line with this practice, albeit it simplifies the cost of the nest as a simple average. Second, the cost of switching between

³In the multinomial logit model, for example, the measure is a log sum term.

DLB operators is relatively low. In China, using a DLB service does not require a long-term subscription. Nor is it necessary to install a dedicated app on one's smartphone. There are a myriad of ways to gain access. Popular social media platforms such as WeChat and Alipay, as well as map services such as Baidu and Gaode,⁴ often provide a seamless interface to bike-sharing, including such crucial functions as bike search and payment. As early as 2017, Alipay had already integrated six DLB operators that collectively provided six million bikes in 50 cities.⁵ Travelers relying on such an "integrator" can freely choose from a large number of operators, and more often than not they pick whichever has bikes readily available nearby.

Assumption 2 regulates how the total number of bikers is determined. The allocation of bikers among operators, i.e., each operator's "market share", depends on their fare and share of idle bikes. In the following, we provide more details on the characterization of bike-sharing demand (Section 4.1) and supply (Section 4.2). The reader is referred to Appendix A for a description of main notations.

4.1 Demand

The bike-sharing demand is determined by the distribution of trip length — whose cumulative distribution function (CDF) is denoted as $G(\cdot)$ — as well as the average fare rate, denoted as f in ¥ per unit distance, and the average access time, denoted as a. Recall that biking is the most competitive mode for trips of medium length, since, intuitively, a traveler would walk when the trip is very short and drive when it is very long. This observation suggests that there is a length range within which all trips will be made by biking. Following Zheng et al. (2023), it is easy to show that the lower and upper bounds of the range, denoted as l and \bar{l} respectively, are given by

$$\underline{l} = \frac{\mu a}{\mu / v_w - f - \mu / v_b} \quad \text{and} \quad \bar{l} = \frac{\tau - \mu a}{f + \mu / v_b - f_d - \mu / v_d},$$
(3)

where μ is the value of time; f_d is the monetary cost of driving per unit distance; τ is the part of the driving cost not directly proportional to the travel distance, such as acquisition and maintenance, and v_w , v_b , and v_d are operating speed for walking, biking, and driving, respectively; see Zheng et al. (2023) for details. Thus, the total demand for bike-sharing is given by

$$Q = \bar{Q} \left(G(\bar{l}) - G(\underline{l}) \right), \tag{4}$$

where \bar{Q} is the total travel demand. Since the focus of this study is the DLB market, we assume the values of *a* and *f* guarantee $\bar{l} > \underline{l}$, which ensures Q > 0.

We next discuss how the total biking demand Q is allocated to each operator. Let Q_i be the *market share* of operator $i \in I$, and define

$$m_i = Q_i / Q \tag{5}$$

as the operator's *market proportion*. This definition allows us to estimate the fare *f* as a ridership-weighted average, i.e.,

⁴https://www.woshipm.com/evaluating/790056.html, in Chinese

⁵https://www.sohu.com/a/137167007_117869, in Chinese.

$$f = \sum_{i \in \mathbb{I}} m_i f_i.$$
(6)

We shall discuss the estimation of access time *a* in Section 4.2 since it is a supply feature.

We assume operator *i*'s market share, Q_i , depends on its share in the supply of idle bikes, as well as the relative difference between its fare and the fares set by the competitors. Intuitively, the larger the share of idle bikes, the lower the fare relative to those of the competitors, the greater the market share. We propose to quantify this relationship using the following function:

$$Q_i = \frac{n_i}{\sum_{j \in \mathbf{I}} n_j} Q - \sum_{j \in -i} k_{ij} (f_i - f_j),$$
(7)

where n_i is the number of idle bikes owned by operator *i* and k_{ij} measures the sensitivity of Q_i to the fare difference between operator *i* and *j* (note that, by definition, $k_{ij} = k_{ji}$). The first term in Equation (7) allocates the total biking demand to operator *i* in proportion to the size of its idle bikes, while the second term adjusts the base allocation based on fare differences. Equation (7) implies that, everything else equal, operator *i* can always influence its market share through pricing. On the other hand, controlling n_i is less straightforward because, as we shall see in the next section, it is related to fleet size, bike demand, and rebalancing activity, through a complicated conservation condition.

Linear demand models similar to (7) have been widely used to capture price elasticity under competition in transportation systems (see e.g., Charnes et al., 1972; Kurata et al., 2007; Zhou and Lee, 2009; Ülkü and Bookbinder, 2012; Zheng et al., 2017; Choi et al., 2020; Li et al., 2022), largely due to the tractability they afford to the analysis. It is easy to verify that the demands assigned to the operators by (7) add up to the total demand, i.e., $\sum_{i \in \mathbb{I}} Q_i = Q$. In theory, the demand model (7) could produce unrealistic market shares. For example, if an operator that owns a very small fleet ($B_i \rightarrow 0$) sets a very high fare, it may end up with a "negative" demand. On the flip side, if it sets the fare close to zero, it may generate a demand larger than what its tiny fleet could plausibly serve. These corner cases are unlikely to rise in a world of rational operators, and when they do occur, they indicate the operator in question should be excluded from the market since it would not make a meaningful contribution to the supply. We will discuss how to prevent the interference of these corner cases later.

4.2 Supply

Each operator independently determines its fare f_i and fleet size B_i . For an operating hour, the total bike time must be conserved for each operator, namely,

$$B_i = n_i + U_i + R_i, \forall i \in \mathbb{I},$$
(8)

where n_i is the idle bike time, U_i is the total bike usage time, and R_i is the total bike rebalancing time.

The average access time *a* depends on the average distance of a random traveler to the nearest idle bike, which in turn depends on the average density spatial distribution of these bikes. Note that, while idle bikes tend to scatter across the city, they naturally form clusters due to the limited suitable bike parking areas. In other words, it is the density and distribution of these

bike clusters, rather than those of the bikes themselves, that play a pivotal role in determining the access time. We call the centroid of a bike cluster a *unique bike location*, and the distance to any bike included in the cluster is represented by the distance to the centroid. We further make the following assumption about unique bike locations.

Assumption 3 (Unique bike location). Unique bike locations (i.e., the locations of bike clusters) distribute uniformly in space, and their density is a function of the density of idle bikes, i.e.,

$$\frac{\tilde{n}}{A} = z(\frac{n}{A}),\tag{9}$$

where \tilde{n} is the number of unique bikes locations and $n = \sum_{i \in \mathbb{I}} n_i$ is the total number of idle bikes.

Zheng et al. (2023) calibrated the function $z(\cdot)$ by clustering GPS locations of idle bikes from a large data set collected in Chengdu. Their results suggested that $z(\cdot)$ is an increasing and concave function.

With Assumption 3, we are ready to derive the average access time based on the average distance between a random point and the nearest unique bike location (see e.g., Daganzo, 1978):

$$a = \frac{\delta}{v_w} \sqrt{\frac{A}{\tilde{n}}},\tag{10}$$

where v_w is the average walking speed and δ is a parameter related to the geometry of the city.

The bike usage time U_i and rebalancing time R_i can be obtained as

$$U_i = \frac{Q_i}{Q} \bar{Q} \int_{\underline{l}}^{\overline{l}} x dG(x), \qquad (11)$$

$$R_i = \frac{L_i}{v_r} \alpha Q_i, \tag{12}$$

where L_i is the average traveling distance per rebalancing trip, v_r is a nominal rebalancing speed that converts the distance to equivalent bike time, and α is the average number of rebalancing trips needed for each "real" bike trip. Note that α can be interpreted as the rebalancing efficiency: the larger the value of α , the lower the efficiency. We treat α and v_r as exogenous parameters and L_i as an endogenous variable. Specifically, α is directly observed from empirical DLB operational data and v_r is estimated based on demand-supply equilibrium, see Zheng et al. (2023) for details.

To estimate the average rebalancing distance L_i , we assume each operator aims to maintain a steady spatial distribution of idle bikes by routinely moving a certain number of idle bikes to unique bike locations that require "replenishment". Since α can be observed from data, the number of idle bikes to be rebalanced per hour is simply αQ_i . By assuming the ratio between αQ_i and the number of unique bike locations in need of replenishment equals the average number of idle bikes in each location, i.e., n_i/\tilde{n}_i , Zheng et al. (2023) estimated

$$L_i = \delta \sqrt{\frac{n_i}{\tilde{n}_i} \frac{A}{\alpha Q_i}},\tag{13}$$

which is the average distance between a random idle bike and the nearest unique bike location in need of replenishment. For a detailed justification, the reader is referred to Zheng et al. (2023). Finally, to rule out unrealistic equilibrium states, we impose the following constraint on the number of idle bikes

$$0 \le n_i \le B_i, \forall i \in \mathbb{I}.$$
⁽¹⁴⁾

While the lower bound is a natural restriction, it also ensures an operator's bike usage time never exceeds its fleet size — as discussed earlier, such a corner case could arise from the demand model (7). On the other hand, the upper bound implies no negative Q_i would be allowed as per Equation (8).

4.3 Equilibrium

Combining (3 - 14) fully specifies the demand-supply interaction in a DLB oligopoly with fixed tactics. For simplicity, we write this equation system as $\mathbb{E}(y) = 0$, which is also the "equilibrium constraint" in (P1), i.e., the operator's decision problem in the lower-level game. We proceed to show that the system should always have a solution. Let us first define the solution as $x = [n_1, \ldots, n_I, f]$ and $x \in \mathbb{X}$, where \mathbb{X} is a feasible set. We choose to represent the system solution using these variables because, as we shall show, they cannot be explicitly represented while all other variables can. Thus, by viewing $\mathbb{E}(y) = 0$ as a self-mapping from \mathbb{X} to itself, we can invoke Brouwer's fixed point theorem (Brouwer, 1911) to prove solution existence.

Proposition 1. If y is a proper decision, there always exists an $x \in X$ such that $\mathbb{E}(y) = 0$.

Proof. Brouwer's fixed point theorem dictates that $\mathbb{E}(y) = 0$ has at least one solution $x \in \mathbb{X}$ if (i) it can be cast as a continuous mapping from \mathbb{X} to itself, and (ii) \mathbb{X} is nonempty and compact.

We first prove (i), which is equivalent to showing any variables in the system other than those included in x can be represented as a continuous function of x. Per Equation (10), the access time a depends on \tilde{n} , which in turn depends on n_i , $\forall i$. Hence, a is a continuous function of x. Since \underline{l} and \overline{l} are determined by a and f, they too are continuous functions of x. From Equations (4) and (7), we can see Q_i and Q are continuous functions of x as well, and Equation (13) suggests L_i is too. Moreover, we may rewrite Equation (8) as follows:

$$n_i = B_i - U_i - R_i, \forall i \in \mathbb{I}.$$
(15)

It is easy to verify all variables in the RHS are continuous functions of x. However, since n_i is part of x, the above relationship is implicit. Finally, the average fare f is determined by Q_i , $\forall i \in \mathbb{I}$ through Equation (7), and hence a continuous function of x. Again, this relationship is implicit.

To prove (ii), first note that f is bounded because it lies in the simplex of f_i , $\forall i \in \mathbb{I}$ and all f_i are bounded since y is proper. In addition, n_i is bounded as per Constraint (14). Therefore, X is closed and bounded, which means it is compact. We next prove X must be nonempty. The only situation that X becomes empty is when no solution can satisfy Constraint (14). We prove this is impossible through construction. Suppose a solution x violates Constraint (14) because $\exists j$ such that $n_j < 0$ or $n_j > B_j$. If $n_j < 0$, it implies that the fleet size is too small to sustain a meaningful service. If $n_j > B_j$, it follows that $Q_i < 0$, suggesting the operator's market share is negligible because of its tactics. Either way, the operator j should be eliminated from the market, i.e., $Q_i = 0$. It is easy to see we can continue the process until the market with remaining operators reaches

a feasible equilibrium. This process must stop with a solution because when there is only one operator left, the solution always exists (Zheng et al., 2023). This completes the proof. \Box

We close by defining each operator's profit and the social welfare attributed to the DLB service at the demand-supply equilibrium given y. Operator *i*'s profit equals its revenue less the operating cost, i.e.,

$$\Pi_{i} = f_{i} \frac{Q_{i}}{Q} \left(\bar{Q} \int_{\underline{l}}^{\overline{l}} x dG(x) \right) - \beta_{0} B_{i} - \beta_{1} \alpha L_{i} Q_{i},$$
(16)

where the first term is operator *i*'s revenue, β_0 denotes the acquisition cost per bike operation hour and β_1 denotes the rebalancing cost per bike per unit distance. Social welfare can be calculated as the travel cost saved by making bike-sharing available as a new transportation mode, namely,

$$W = C_0 - \left(\beta_0 \sum_{j \in \mathbb{I}} B_j + \beta_1 \alpha \sum_{j \in \mathbb{I}} L_j Q_j\right) - \left(\frac{\mu}{v_w} \int_0^{\underline{l}} x dG(x)\right) \bar{Q} - \left(\mu a \left(G(\bar{l}) - G(\underline{l})\right) + \frac{\mu}{v_b} \int_{\underline{l}}^{\bar{l}} x dG(x)\right) \bar{Q} - \left(\left(\frac{\mu}{v_d} + d\right) \int_{\overline{l}}^{+\infty} x dG(x) + \tau (1 - G(\bar{l}))\right) \bar{Q},$$
(17)

where C_0 denotes the social cost without the DLB system.

4.4 Analysis

In this section, we present a few analytical results concerning the properties of the demandsupply equilibrium formulated above. To facilitate the analysis, let us first define η_n and η_f as the elasticity of total bike-sharing demand with respect to, respectively, the total number of idle bikes (*n*) and the average fare of DLB service (*f*), namely,

$$\eta_n = \frac{\partial Q/Q}{\partial n/n}, \eta_f = \frac{\partial Q/Q}{\partial f/f}.$$
(18)

Proposition 2. Consider a DLB duopoly, i.e., $\mathbb{I} = \{1,2\}$. Assume $f_1 \leq f_2$ and denote the difference $d_f = f_2 - f_1$. Suppose the operators maintain a steady level of service, which means they keep their idle bike time constant.

- When f_1 decreases, the ridership of Operator 1 always increases, and that of Operator 2 increases if $d_f > d_1 \equiv -\frac{[Q_1n_2 + (n_1+n_2)k_{12}f/\eta_f]Q}{(n_1+n_2)k_{12}Q_2}$.
- When f_2 decreases, the ridership of Operator 2 increases if $d_f < d_2 \equiv \frac{\left[Q_2 n_2 (n_1 + n_2)k_{12}f/\eta_f\right]Q}{(n_1 + n_2)k_{12}Q_2}$ and that of Operator 1 increases if $d_f < d_3 \equiv \frac{\left[Q_2 n_1 + (n_1 + n_2)k_{12}f/\eta_f\right]Q}{(n_1 + n_2)k_{12}Q_1}$ where $d_2 > d_3$.

Proof. See Appendix B for details.

The above result illustrates the relationship between an operator's ridership and the fares of both itself and its competitor. When an operator cuts the price, it has two opposing effects. On the

one hand, the lower price attracts more travelers to the DLB service, which helps its competitor gain ridership. On the other hand, the operator can also increase its market proportion with the lowered fare, thereby taking travelers away from its competitor. Proposition 2 shows that, under certain conditions, the first effect above dominates and an operator may enjoy a "free-ride" — that is, it achieves a higher ridership when the competitor lowers the price. Moreover, when the operator charging a lower fare further reduces the price, it is guaranteed to gain ridership. However, when the operator that initially charges a higher price attempts to grab ridership by lowering the price, it has to substantially decrease the price difference for the strategy to work.

The impact of fleet size on ridership can be analyzed similarly. However, the analysis is quite complicated because the average DLB fare depends on the market share of each operator, which in turn is a function of their respective fleet sizes. For tractability, we only consider the case where all operators charge the same fare.

Proposition 3. Consider a DLB market with I > 1 operators. Let n_i^* be the number of idle bikes owned by operator *i* at a market equilibrium (i.e., a solution to the system (3) - (14) defined by a proper decision vector) and suppose all other operators maintain a steady level of service (constant idle bike time). If the fare f_i is the same for each $i \in \mathbb{I}$ and $\eta_n < 1$, n_i^* is a strictly increasing function of its own fleet size B_i , *i.e.*, $\frac{\partial n_i^*}{\partial B_i} > 0$.

Proof. See Appendix C for details.

The above result seems intuitive: ceteris paribus, an operator may increase its holding of idle bikes, hence improving overall accessibility to bike-sharing, by acquiring a larger fleet. Zheng et al. (2023) gave a similar result for a market with a monopolizing DLB operator. The difference is that, in the case of monopoly, the result holds regardless of the value of the demand elasticity with respect to the fleet of idle bikes (η_n). Proposition 3 highlights under what condition the same result continues to hold in the oligopoly case. When η_n is too large (≥ 1), an operator unilaterally increasing its fleet size may induce a significant demand surge, of which it absorbs a disproportionately large share. The extra demand could end up reducing the number of idle bikes. We expect, however, the magnitude of η_n to be well below one in practice, i.e., the increase in the total DLB demand caused by one percent increase in *n* is much less than one percent.

Proposition 4. Consider a DLB market with I > 1 operators. If $\eta_n < 1$ and all other operators maintain a steady level of service (constant idle bike volume), then an operator's ridership always increases with its own fleet size and decreases with its competitor's fleet size.

Proof. Since the competitors maintain constant idle bike fleets, we can write the derivative of operator i's demand Q_i with respect to its own fleet size B_i as

$$\frac{\partial Q_i}{\partial B_i} = \left[\frac{\sum_{j \in -i} n_j}{\left(\sum_{j \in \mathbb{I}} n_j\right)^2} Q + \frac{n_i}{\sum_{j \in \mathbb{I}} n_j} \frac{\partial Q}{\partial n_i} \right] \frac{\partial n_i}{\partial B_i}.$$
(19)

Note that $\eta_n < 1$ implies Proposition 3 holds. Hence, we have $\frac{\partial n_i}{\partial B_i} > 0$. Since $\frac{\partial Q}{\partial n_i} > 0$ always holds by definition, the RHS of Equation (19) is positive, which indicates Q_i strictly increases with B_i .

Holding all but operator *j*'s idle bike fleet constant we can similarly derive $\partial Q_i / \partial B_j$, $\forall j \in -i$ as

$$\frac{\partial Q_i}{\partial B_j} = \left[\frac{n_i Q}{\left(\sum_{j \in \mathbb{I}} n_j\right)^4} \left(\eta_n - 1\right) \right] \frac{\partial n_j}{\partial B_j}, \forall j \in -i.$$
(20)

Again, by invoking Proposition 3, we can show that the RHS of Equation (20) is negative. Therefore, operator *i* loses market share when any of its competitors add more bikes to the market. \Box

Proposition 4 confirms the intuition that, in a DLB market with competition, an operator can always attract more travelers and diminish the market share of its competitors by putting more bikes on streets.

5 Solution algorithm for the lower-level game

In this section, we show how the sub-game perfect Nash equilibrium of the lower-level game, defined in Section 3.2, may be found using a numerical procedure. We first re-write the operator *i*'s decision problem (P1) by replacing the equilibrium condition with Equations (3) - (14), i.e.,

$$\begin{array}{ll} \max_{\boldsymbol{y}_i \in \mathbb{Y}_0} & T_{ik}\left(\boldsymbol{y}_i, \boldsymbol{y}_{-i}\right) \\ \text{s.t.} & (3) - (14), \\ & D_i\left(\boldsymbol{y}_i, \boldsymbol{y}_{-i}\right) \geq 0. \end{array}$$
(P2)

The Lagrangian dual problem of (P2) is defined as follows:

$$\min_{\boldsymbol{\lambda}_{i}} \quad \theta(\boldsymbol{\lambda}_{i}) = \sup_{\boldsymbol{y}_{i}} L_{i}(\boldsymbol{\lambda}_{i}, \boldsymbol{y}_{i})$$
s.t. $\boldsymbol{\lambda}_{i} \ge \mathbf{0},$
(P3)
(3) - (14).

where $\lambda_i = [\lambda_i^1, \lambda_i^2, \lambda_i^3]$ is Lagrange multiplier and $L_i(\lambda_i, y_i) = T_{ik}(y_i, y_{-i}) + \lambda_i^1 D_i(y_i, y_{-i}) + \lambda_i^2 (\Gamma_f - f_i) + \lambda_i^3 (\Gamma_B - B_i)$. For a given λ_i and ignoring corner solutions at [0, 0],⁶ the first-order condition of $\sup_{y_i} L_i(\lambda_i, y_i)$ implies that operator *i*'s optimal strategy y_i^* should satisfy:

$$\frac{\partial L_i(\boldsymbol{\lambda}_i, \boldsymbol{y}_i^*)}{\partial \boldsymbol{y}_i^*} = 0.$$
(21)

By definition we have $\theta(\lambda_i) = L_i(\lambda_i, y_i^*)$. Taking partial derivative with respect to λ_i on both sides yields $\frac{\partial \theta(\lambda_i)}{\partial \lambda_i} = \frac{\partial L_i(\lambda_i, y_i^*)}{\partial \lambda_i} + \frac{\partial L_i(\lambda_i, y_i^*)}{\partial y_i^*} \frac{\partial y_i^*}{\partial \lambda_i} = \frac{\partial L_i(\lambda_i, y_i^*)}{\partial \lambda_i}$. From the KKT conditions of (P3), we have the following:

$$\lambda_i^z \frac{\partial L_i(\boldsymbol{\lambda}_i, \boldsymbol{y}_i^*)}{\partial \lambda_i^z} = 0, \forall z \in \{1, 2, 3\},$$
(22)

$$\lambda_i^z \ge 0, \frac{\partial L_i(\boldsymbol{\lambda}_i, \boldsymbol{y}_i^*)}{\partial \lambda_i^z} \ge 0, \forall z \in \{1, 2, 3\}.$$
(23)

⁶Setting either the price or the fleet size to zero is evidently a sub-optimal decision.

Algorithm 1 Bi-level Dual Gradient Descent (BDGD)

1: **Inputs:** Action s_i and objective T_{ik} , $\forall i \in \mathbb{I}$, step sizes ρ_y , ρ_λ , and convergence criterion ϵ . 2: Initialize $\boldsymbol{\lambda} = [\boldsymbol{\lambda}_i] = [\lambda_i^1, \lambda_i^2, \lambda_i^3], \forall i \in \mathbb{I}$ 3: Set $g_{\lambda} = \infty$ 4: while $g_{\lambda} \geq \epsilon$ do Set $g_y = \infty$ 5: Initialize tactics as $y = [y_i, \forall i \in \mathbb{I}]$, where $y_i = \tilde{y}, \forall i \in \mathbb{I}$. 6: 7: while $g_{y} \geq \epsilon$ do Find demand-supply equilibrium using Algorithm 2 8: Calculate $\nabla_{\boldsymbol{y}} = \left[\frac{\partial L_i(\boldsymbol{\lambda}_i, \boldsymbol{y}_i)}{\partial \boldsymbol{y}_i}\right]$ using the procedure described in Appendix D 9: Set $g_y = \|\nabla_y\|_{\infty}$ 10: Set $\boldsymbol{y} = [\boldsymbol{y} + \rho_{\boldsymbol{y}} \cdot \nabla_{\boldsymbol{y}}]_+$ 11: end while 12: Calculate $\nabla_{\lambda} = \left[\frac{\partial L_i(\boldsymbol{\lambda}_i, \boldsymbol{y}_i)}{\partial \boldsymbol{\lambda}_i}\right]$ 13: Set $g_{\lambda} = \boldsymbol{\lambda} \times [\nabla_{\lambda}]_{+}^{T}$ 14: Set $\boldsymbol{\lambda} = [\boldsymbol{\lambda} + \rho_{\lambda} \cdot \nabla_{\lambda}]_{+}$ 15: 16: end while 17: **Output:** Optimal decision vector *y*.

Equations (21) - (23) are the market equilibrium conditions for any operator $i \in \mathbb{I}$ when they maximize T_{ik} subject to a generalized constraint denoted as $D_i(y_i, y_{-i}) \ge 0$.

We propose to solve Equations (21) - (23) using a Bi-level Dual Gradient Descent (BDGD) algorithm (see Algorithm 1). The algorithm consists of two main loops. In the inner loop, the Lagrangian multiplier vector $\lambda = [\lambda_i]$ is fixed as constant, and the oligopoly equilibrium, i.e., the optimal decision vector $y = [y_i]$, is obtained by a gradient decent method based on automatic differentiation (Baydin et al., 2018).⁷ After getting the optimal decision vector y, the outer loop updates λ by adding the gradient of each operator's Lagrangian function $L_i(\lambda_i, y_i)$ with respect to λ_i . By definition, the value of that gradient can be easily obtained by calculating $[D_i(y_i, y_{-i}), \Gamma_f - f_i, \Gamma_B - B_i]$. When λ converges, the algorithm is terminated, and the optimal y from the last inner loop is retained as the optimal solution. It is worth emphasizing in the algorithm all operators simultaneously update their decisions in each loop and when it is terminated, the equilibrium solution is found for all operators in the market.

The algorithm presented herein is designed to find a stationary point that may not be unique. Strictly speaking, a physically meaningful stationary point may not even exist. In our numerical experiments, we try to detect multiple equilibria by starting from different initial points, but have yet to find a single multi-equilibria instance in the case study constructed from real data. We next describe the case study.

⁷The detailed procedure is included in Appendix D.

Algorithm 2 Demand-supply equilibration given tactic decisions

```
1: Inputs: B_i, f_i, \forall i, step size \rho, convergence criterion \epsilon, Cont = True
 2: while Cont do
         Initialize V = [n_1, ..., n_I, f] with 0 \le n_i \le B_i, \forall i \in \mathbb{I} and \min_{i \in \mathbb{I}} f_i \le f \le \max_{i \in \mathbb{I}} f_i
 3:
 4:
         Set the gap g = \infty
         while g \ge \epsilon do
 5:
             Calculate a, \underline{l}, \overline{l}, Q, using Equations (10), (3), and (4)
 6:
             Calculate Q_i, \forall i \in \mathbb{I} using Equation (7)
 7:
             Calculate the number of idle bikes n_i', \forall i \in \mathbb{I} using Equation (8)
 8:
             Calculate the average trip fare f' using Equation (6)
 9:
             Set the new market equilibrium vector V' = [n_1', ..., n_l', f']
10:
```

```
11: Set g = |V' - V|
```

```
12: Update V by V = V + \rho \cdot (V' - V)
```

```
13: end while
```

```
14: if \exists n_j > B_j, n_j \in V then
```

```
15: Update I = I \setminus j
```

```
16: else if \exists n_i < 0, n_i \in V then
```

```
17: Update \mathbb{I} = \mathbb{I} \setminus j
```

```
18: else
```

```
19: Cont = False
```

```
20: end if
```

```
21: end while
```

```
22: Output: V and \mathbb{I} at equilibrium.
```


Figure 2: Chengdu's city center (colored area) considered for the case study.

6 Case study

In this section, a case study is constructed to operationalize the model and to examine the likely outcome of the DLB oligopoly under various hypothetical conditions that resemble those found in a Chinese megacity with a well-developed DLB market. Below, we first describe the data set, before specifying the DLB oligopoly game built from it.

6.1 Data

We employ a set of DLB trip records collected by a large DLB operator in Chengdu, China over a period of 43 days, from March 25, 2020, to May 6, 2020. The data were concentrated in the center of the city (see the colored area in Figure 2). Each trip record contains a trip ID, a bike ID, a user ID, start/end timestamps, start/end GPS coordinates, and a trip distance. In total, there are 15,349,358 recorded trips, associated with 249,377 unique bike IDs. On average, a bike is utilized 1.43 times per day during this period. Considering that almost 97% of bike rides took place between 7:00 AM and 11:00 PM, we utilized all trips occurring within this window to establish the analysis hour in our model — that is, all analyses are performed for an "average hour" in that period.

With a land area of 525 square kilometers (km²), the study area is inhabited by a population of 4.23 million. In September 2018, the total number of shared bikes within this area had reached 1.1 million. However, in May 2019, a strict limit was imposed, capping the DLB bike fleet at 600,000. About a year later, shortly after the data used in this study were collected, the cap was further reduced to 450,000 bikes. Therefore, we assume that during the data collection period, there were around 600,000 bikes in the city owned by multiple operators. Accordingly, the data set we have, consisting of approximately a quarter million bikes, accounts for slightly over 40% of the market share. The average number of trips made by these bikes is 20,709 per hour in the analysis period. Assuming the ridership of each operator is proportional to its fleet size, we estimate the total DLB ridership at 49,922 trips/hr for a fleet of 600,000.

Most input variables can be directly observed or estimated from publicly available sources. The notable exceptions are the unique bike location function $z(\cdot)$, the fixed driving cost, the total travel demand, and the rebalancing speed. Zheng et al. (2023) estimated $z(\cdot)$ by clustering idle

Parameter		Unit	Value
Biking speed	v_b	km/hr	7.21
Study area	Α	km ²	525
Rebalancing frequency	α		0.2
Value of time	μ	¥/hr	30
Walking speed	v_w	km/hr	4
Driving speed	v_d	km/hr	25
Variable driving cost	f_d	¥/km	1
Access factor	δ		0.65
Bike acquisition cost	β_0	¥/hr	0.057
Unit bike rebalancing cost	eta_1	¥/km	1
Bike fare (status quo)	f_1, f_2	¥/km	0.416
Fixed driving cost	τ	¥	6.49
Total demand rate	Q	trips/hr	162,000
Rebalancing speed	v_r	km/h	2
Competition factor	$k_{ij}, \forall i, j \in \{\mathbb{I}\}$	trips/¥	23,200
Unique location function	$z(\cdot)$		$\frac{\tilde{n}}{A} = 4.15 \left(\frac{n}{A}\right)^{0.26}$

Table 2: Default values of key input parameters in the case study

bike location data. The other three parameters were calibrated by matching a demand-supply equilibrium to real observations, see Zheng et al. (2023) for details. The default values of all input parameters are reported in Table 2.

The present study does have a unique parameter—the competition factor k_{ij} —that needs to be estimated. Recall that k_{ij} captures the amount of ridership shifted between operators *i* and *j* when the difference in their fares changes. To reduce the burden of estimation, we assume the competition factor is constant among all pairs of operators. To give a first-order estimation, we use the change rate in the total DLB ridership with respect to the average fare in the base model as a surrogate. The analysis suggests that, when all parameters are fixed at their current level (i.e., the status quo), the DLB ridership decreases by 232 when the fare increases by ¥0.01/km. This is translated to a value of k_{ij} at 23,200. We shall also test the model's sensitivity to k_{ij} in Section 7.5.

6.2 Game settings

We set the action set $S = \{p, r\}$, where p denotes the action of profit maximization and r denotes that of ridership maximization. We choose these two actions because they are the most obvious options. An operator may prioritize ridership to grow market share, a common strategy during the early phase, when it strives to build a strong user base or drive out competition. In a mature market, where most operators have a relatively stable market share, profit maximization seems a more rational action.

For an operator *i* taking action p, the objective function for its decision problem is $T_{ip}(y_i, y_{-i}) = \Pi_i(y_i, y_{-i})$, as defined in Equation (16). For profit maximization, Constraint (P1-c) is not needed.

If the operator chooses r, we assume that it would be constrained by a profit target $\bar{\Pi}_i$. This is reasonable because, given an unlimited amount of money, one can always monopolize a market by flooding it with an infinite number of bikes. In this case, the operator's decision problem has an objective function $T_{ir}(y_i, y_{-i}) = Q_i(y_i, y_{-i})$ and Constraint (P1-c) that reads $\Pi_i(y_i, y_{-i}) - \bar{\Pi}_i \ge 0$.

In most hypotheticals, we consider a duopoly game (i.e., $\mathbb{I} = \{1,2\}$) to avoid unnecessary complications. A sensitivity analysis will be performed to examine how the number of operators affects the outcome of the game. In our hypothetical duopoly, operator 1 is the real operator whose data are used to build the case study (i.e., its supply of bikes amounts to about 40% of the total supply in the market), and Operator 2 is a virtual operator that supplies 60% of bikes, by lumping together all other DLB operations in the city.

7 Numerical experiments

We begin by examining various subgame perfect Nash equilibria, each corresponding to a specific action profile. The results are compared with a DLB monopoly to gain insights on the impact of competition. Section 7.2 analyzes the likely outcomes of a duopoly competition game, and Section 7.3 explores how various regulatory policies may influence them. Section 7.4 extends the analysis to the asymmetric case in which operators are heterogeneous. The results of sensitivity analyses are reported in Section 7.5.

7.1 Subgame perfect Nash equilibrium

In this section, we focus on the results of the lower-level game and assume the operators in the duopoly always take the same action. Two scenarios are considered: profit maximization (DU-p in short) and ridership maximization without running a deficit (DU-r in short). The subgame perfect equilibria are compared with the status quo (i.e., as observed in the real data), defined by the following tactic decisions for the two operators: $f_1 = f_2 = \pm 0.416$ /km, $B_1 = 248,894$, $B_2 = 351,106$.

Table 3 compares the system performances in the three scenarios. The performance is measured by the overall DLB market metrics (e.g., social welfare, access time, total ridership) and each operator's metrics (e.g., tactic decisions, market share, cost, and profit). In the former category, social welfare is the total travel cost savings as defined in Equation (17). An operator's profit is its revenue less acquisition and rebalancing costs; the percentage in the parentheses in the last four rows of the table are relative to the operator's revenue. In DU-p and DU-r, the operators have the same performance because by default they are identical (in terms of both characteristics and action). To provide another benchmark, we also include in this section the results of a monopoly, taken directly from Zheng et al. (2023), see Table 4. This gives us two more scenarios: a profit-maximizing monopoly (MO-p in short) and a ridership-maximizing monopoly (MO-r in short). A quick inspection of Table 3 and Table 4 reveals that the duopoly scenarios resemble the status quo much better than the monopoly scenarios in nearly all metrics (especially price, fleet size, and utilization ratio). More details to follow on this difference.

In the status quo, the operator with a smaller market share suffers a higher rebalancing cost

Scenarios:	the status quo		DU-p	DU-r ⁹
Access time (min)	1.	92	2.16	2.06
Total ridership (trips/hr)	49,	956	40,548	46,672
Average trip distance (km)	1.	26	1.17	1.23
Social welfare (Y /hr)	46,930		56,180	57,122
operator:	Operator 1	Operator 2	Operator 1/2	Operator 1/2
Price (¥/km)	0.416	0.416	0.743	0.503
#bike	248,894	351,106	126,786	178,769
Utilization ratio	1.46%	1.46%	2.59%	2.23%
Ridership (trips/hr)	20,718	29,238	20,274	23,336
Market share	41.5%	58.5%	50%	50%
Profit (¥/hr)	-7,876 (-73%)	-10,826 (-71%)	6,850 (39%)	0 (0%)
Acquisition cost (Y/hr)	14,187 (131%)	20,013 (131%)	7,227 (41%)	10,190 (70%)
Rebalancing cost (Y/hr)	4,559 (42%)	6,152 (39%)	3,492 (20%)	4,264 (30%)
Revenue ¹⁰ (\pm /hr)	10,869 (100%)	15,339 (100%)	17,569 (100%)	14,454 (100%)

Table 3: DLB system performances: duopoly vs. the status quo.

for each bike kilometer traveled (\neq 0.175 for Operator 1 vs. \neq 0.167 for Operator 2).⁸ This means a DLB operator could reduce its rebalancing cost by serving a larger market share. In DU-p, where both operators aim to maximize profit, the price is 80% higher than the status quo. This rate of increase, however, is much smaller than what is observed in a monopoly (300% in MO-p). Similarly, there is a milder change in the total fleet size, as well as in the ridership, in a duopoly than in a monopoly. The fleet size drops by 58% in DU-p compared to the status quo, whereas a 90% reduction occurs in MO-p. Also, the total ridership drops 19% and 48% in DU-p and MO-p, respectively. Clearly, the competition means neither operator has as much power as a monopoly to swing the market with tactic decisions. As a result, they must settle for less aggressive tactics that seem to better reflect the reality (the status quo).

A closer look at the differences between DU-p and MO-p reveals the inefficiencies resulted from the competition, including a lower utilization ratio and reduced profits for both operators (indeed, the total profit earned by both operators in the duopoly still falls far behind the monopolistic profit). Yet, social welfare is improved in the duopoly compared to the status quo, even if both operators aim to maximize profit. In contrast, allowing a monopoly in the market hurts social welfare. We shall return to the impact of competition on social welfare in Section 7.5, where more than two operators are allowed in the market.

We next turn to another action: ridership maximization without deficit. In DU-r, the fare rises but the fleet size decreases compared to the status quo. The operators in the duopoly collectively maintain a much larger fleet than does the operator in MO-r, thanks to the competitive pressure. The extra burden explains why they must charge a considerably higher price ($\frac{10.503}{\text{km}}$ vs.

 $^{^{8}}$ At ± 0.17 /km, the rebalancing cost is about ± 0.3 /bike per day, very close to the estimation reported in https: //m.36kr.com/p/2150789257283847, in Chinese.

⁹Operator 1 and 2 are identical in Scenario DU-p (DU-r).

¹⁰Revenue equals the sum of profit, acquisition cost, and rebalancing cost.

Scenarios	МО-р	MO-r
Price (¥/km)	1.222	0.161
#bike	56,962	108,427
Access time (min)	2.64	2.43
Average trip distance (km)	1.11	1.36
Utilization ratio	7.01%	8.97%
Ridership (trips/hr)	25,988	51,532
Social welfare $(¥/hr)$	45,461	69,672
Profit (¥/hr)	29,020 (83%)	0 (0%)
Acquisition cost (Y/hr)	3,246 (9%)	6,180 (55%)
Rebalancing cost (Y/hr)	2,876 (8%)	5,102 (45%)
Revenue (¥/hr)	35,144 (100%)	11,282 (100%)

Table 4: DLB system performance in a monopolistic market. (Results from Zheng et al. (2023))

¥0.161/km) to avoid running a deficit. Taken together, the duopoly generates a total ridership of around 46,700 trips/hr, about 10% lower than the monopolistic market and 7% lower than the status quo. Furthermore, social welfare in DU-r is 18% lower than that achieved by the "benign" monopoly that strives to maximize DLB ridership. Although DU-r performs better than DU-p in most system performance metrics (e.g., ridership and social welfare), it is less efficient, as measured by utilization ratio and profit. Moreover, the relative differences made by the actions are much smaller with competition than those without.

7.2 Outcomes of a DLB duopoly competition

We next turn to the dynamic game where the operators may choose either action at the upper level. We solve the subgame perfect Nash equilibria in four scenarios (each defined by an action profile with a different combination of actions) and obtain the payoffs of each operator in each scenario. For example, in Table 5, the upper-right cell reports the payoff vectors (profit and ridership) of both operators and social welfare when Operator 1 maximizes profit and Operator 2 chooses ridership maximization without deficit.

If Operator 1 chooses to maximize ridership, Operator 2 will be worse off in terms of both profit and ridership if it wishes to maximize profit. Specifically, Operator 2 will break even and retain a ridership of 23,336 trips/hr (a market share of 50%) by maximizing ridership. If, instead, Operator 2 switches to profit maximization, it will run a deficit of \pm -117/hr and has a considerably smaller market share (less than half of what can be achieved had it stuck to ridership maximization). Thus, ridership maximization is a dominant action for Operator 2 in this case.

If Operator 1's action is to maximize profit, both profit and ridership maximization are consistent actions for Operator 2. If the action is to maximize profit, it will find maximizing profit indeed is better than maximizing ridership — the former gives a profit of $\pm 6,850$ /hr and the latter ± 0 /hr. If the action is to maximize ridership, then maximizing ridership leads to a ridership of 39,387 trips/hr, much higher than 20,274 trips/hr obtained when it also maximizes profit. In any case, unilaterally committing to profit maximization gives one's competitor the freedom to Table 5: System performance in a duopoly dynamic game with non-deficit constraint. In each cell, the first and second rows report the payoff vectors for Operator 1 and 2, respectively, where the first/second element is its profit (Y/hr)/ridership (trips/hr), and the third row reports social welfare (Y/hr).

		Operator 2		
		$s_2 = p$	$s_2 = r$	
	$s_1 = p$	6850, 20274	-117, 9539	
Operator 1		6850, 20274	0, 39387	
		56180	62868	
Operator 1		0, 39387	0, 23336	
	$s_1 = r$	-117, 9539	0, 23336	
		62868	57122	

choose based on its own preference, a strong strategic position. If the competitor happens to prioritize ridership, then Operator 1 will suffer significant losses.

The above analysis indicates that no rational operator should unilaterally commit to profit maximization because doing so puts itself in a vulnerable position where it can lose both money and ridership. Consequently, although the market reaches the Nash equilibrium under weak preference (NEWP, defined in Section 3.1) when both operators opt for profit maximization, such a scenario is improbable in real world. Moreover, if one's competitor seeks to maximize ridership, following suit becomes the dominant action. As a result, both operators striving to maximize ridership is the only Nash equilibrium under strong preference (NESP, defined in Section 3.1), which produces a total ridership of about 46,700 trips/hr, evenly split between the two rivals. Of course, the two operators may cooperate and agree to an accord that forbids them from attempting to maximize ridership. This will allow them to make much more money (¥6,850/hr vs. ¥0/hr), while only mildly depressing the total ridership (from about 46,700 trips/hr to 40,500 trips/hr, a reduction of 13%). However, such cooperation is hard to come by in an unregulated market.

Interestingly, the outcome under NESP is desirable from the point of view of social welfare. While the operators may like the outcome in the upper-left cell in Table 5—their inability to achieve it notwithstanding—society may prefer the outcome in the lower-right cell as it yields higher social welfare. We note that, however, this need not always be the case.

Suppose one of the operators is determined to dominate the market by heavily subsidizing the DLB operation. The willingness to run a large deficit will enable the operator to expand its fleet and cut the price, thereby threatening the competitor's market position. If the competitor has the resources to respond in kind, the market may plunge into an intensive and destructive price war that many Chinese mega cities have witnessed in 2016 - 2017 (Yang, 2020). This could lead to a massive oversupply of bikes at an excessively low price. In the end, because the overall market potential of biking is limited, much of the resources would be wasted, which is a detriment to social good. To illustrate this point, consider a case where both operators are willing to run a deficit of $\frac{20,000}{hr}$. The results are reported in Table 6. In this case, if Operator 1 maximizes ridership and Operator 2 maximizes profit (the lower-left cell), Operator 2 will be squeezed out of

Table 6: System performance in a duopoly dynamic game with maximum loss ¥20,000 per hour.

Figure 3: Total ridership and social welfare achieved by different fleet cap policies. (a) Both operators maximize profit. (b) Both operators maximize ridership.

the market (highlighted as NA in Table 6), and the system is reduced to a monopoly. The action profile corresponding to the lower-right cell is still an NESP,¹¹ but now social welfare drops to $\frac{448,480}{hr}$, the worst of all scenarios.

7.3 Role of regulation

Having revealed the negative consequences of an unregulated duopoly, we proceed to examine what a regulator might do to avoid them. We assume (i) the regulator may cap either fleet size or fare, but not both; (ii) when either restriction is imposed, the operators are still free to compete with each other by setting the objective and making tactic decisions; and (iii) when an operator's objective is to maximize ridership, the regulator assumes it is willing to subsidize rides as much as needed.

We first consider the fleet cap policy, which sets an upper bound on the number of bikes each operator is allowed to put in the market. Figure 3 reports the market's total ridership (left y-axis) and social welfare (right y-axis) when both operators seek to maximize profit (Figure 3a) or ridership (Figure 3b). Regardless of the objective, a larger fleet cap always leads to higher

¹¹When Operator 2 is forced out by choosing action p, its ridership and profit are both reduced to zero. If it chooses r, it will lose 20000. However, since this deficit must be subsidized externally (e.g., by investors), Operator 2 is assumed to be indifferent between (i) losing 20000 when choosing r and (ii) earning a zero profit when choosing p. Thus, the lower-right cell corresponds to an NESP.

ridership, though the marginal returns diminish quickly after the cap exceeds 100K. On the other hand, social welfare first increases with the fleet cap, and then begins to drop precipitously once reaching a certain threshold. It peaks in both cases when the fleet cap for each operator falls between 50K and 65K.

Table 7: System performance in a duopoly dynamic game with a fleet cap = 61803 for each operator; no budget constraint in r.

		Operator 2		
		$s_2 = p$	$s_2 = r$	
		10274, 19516	5398, 12605	
	$s_1 = p$	10274, 19516	-6552, 39273	
Operator 1		60037	69480	
Operator 1		-6552, 39273	-6176, 28056	
	$s_1 = \mathbf{r}$	5398, 12605	-6176, 28056	
		69480	69741	

We then assume the regulator sets the fleet cap at the value where social welfare is maximized in Figure 3b (61,803). Table 7 reports the payoffs in a duopoly dynamic game. In this case, both actions, i.e., p and r, are consistent no matter what the competitor's action is. To see this, let us assume Operator 1 adopts p. If Operator 2 also adopts p, then both earn a profit of \pm 10,274/hr from serving 19,516 rides; Operator 2's profit would drop to \pm -6,552/hr by switching to r, suggesting p is consistent for Operator 2. In the above example, when Operator 2 switches from p to r, its ridership increases from 19516 trips/hr to 39273 trips/hr, though its profit drops, suggesting action r is consistent as well. The reader can verify that if Operator 1 adopts r, p and r are still consistent actions for Operator 2. Therefore, under the "optimal" fleet cap policy, all four action profiles in Table 7 are NEWP and no NESP exists, implying the market may settle at any of the four competition scenarios. Importantly, the social welfare in any of the four scenarios is significantly higher than their counterparts achieved without the regulation (see Table 6). The fleet cap also improves profitability. Take the case where both operators adopt p. Under the fleet cap, they each make $\pm 10274/hr$, nearly 50% higher than what they would make without the regulation. This makes sense because the cap prevents both operators from self-destructive fleet expansion.

We next turn to the fare cap regulation, which restricts how much the operators can charge the riders. Figure 4 reports the results when the operators have the same action. We can see that when the objective is to maximize ridership, the fare cap policy affects neither ridership nor social welfare (Figure 4b). This is because the competition pressure would force the operators to set the fare so low that the cap is never activated. Moreover, as discussed earlier, r will be a dominant action because it is not subject to a budget constraint per our assumption. Thus, the fare cap policy is not an effective regulatory tool. In the unlikely scenario where both operators seek to maximize profit, a price cap would make a difference. As shown in Figure 4a, the price cap that attains the highest ridership and social welfare is around $\frac{20.2}{\text{km}}$, which is significantly lower than the optimal fare cap in a monopolistic market with similar settings (about $\frac{20.4}{\text{km}}$; see Zheng et al., 2023). The peak ridership and social welfare in a duopoly are also higher than those achieved in a monopolistic market with similar settings.

Figure 4: Total ridership and social welfare achieved by different fare cap policies. (a) Both operators maximize profit. (b) Both operators maximize ridership.

7.4 Asymmetry

Up to this point, the two operators in the duopoly are assumed to be identical. We now turn to an asymmetric duopoly that consists of two heterogeneous operators. In Section 7.4.1, we consider the case where the two operators differ from each other in their ability to sustain losses. Section 7.4.2 examines how crucial operational characteristics, such as bike acquisition cost and rebalancing efficiency, affect the system outcome.

7.4.1 Ability to sustain losses

Our goal is to show how the ability to sustain losses strengthens an operator's position in a duopoly. As noted before, when a lower profit target is allowed, r is a dominant action. Thus, we assume both operators maximize ridership. The operators are identical except for their profit target. As a baseline, we set the profit target for Operator 1 and 2 as \pm -5,000/hr and \pm -10,000/hr, respectively. That is, Operator 2 is willing to lose \pm 10000 per hour whereas Operator 1 can afford only half of that loss.

As reported in Table 8, Operator 2 acquires a fleet about 60% larger and sets the fare about 30% lower than its competitor. This is expected because Operator 2 outspends Operator 1 at a ratio of 2:1. As a result, Operator 2 captures about 66% of the DLB market and enjoys a significantly higher utilization rate (2.3% vs. 1.9%). However, due to the lower price it charges, Operator 2's strong market position only brings in a revenue about 40% higher than the competitor. Moreover, the larger fleet also induces a much higher acquisition cost (61% more) and rebalancing cost (66% more). For each thousand ridership gained, Operator 2 endures a loss of $\frac{220}{hr}$, whereas Operator 1 "pays" $\frac{281}{hr}$. Thus, attempting to achieve dominance by overspending may not scale well because the more one spends, the less gain one can achieve at the margin. To further explore this issue, we change Operator 2's maximum loss while keeping Operator 1's fixed at $\frac{5000}{hr}$. Figure 5 reports the optimal tactic decisions and main performance metrics of Operator 2, as its maximum loss varies from $\frac{2}{5000}/hr$ to $\frac{2}{23000}/hr$. As expected, the greater deficit the operator can tolerate, the larger fleet and the lower fare it can afford. However, the diminishing

Table 8: DLB system performances when two ridership-maximizing operators have different tolerance levels for monetary loss.

Access time (min)	2	.01	
Total ridership (trips/hr)	52		
Social welfare $(¥/hr)$	56	,828	
operator:	Operator 1	Operator 2	
Maximum loss (Y/hr)	-5,000	-10,000	
Price $(\frac{Y}{km})$	0.357	0.256	
#bike	169,245	271,755	
Utilization ratio	1.90%	2.30%	
Ridership (trips/hr)	17,743	34,477	
Profit $(\frac{Y}{hr})$	-5,000 (-60%)	-10,000 (-86%)	
Acquisition cost (Y/hr)	9,647 (116%)	15,490 (134%)	
Rebalancing cost $(¥/hr)$	3,649 (44%)	6,051 (52%)	
Revenue (¥/hr)	8,296 (100%)	11,541 (100%)	
3.2×10^5	5 ×10 ⁴		
	5		- 4.0
2.8	4		- 3.5
2.6	Fare Ridership		- 3.0
2.4 0.2	Ride		3.0
	2		- 2.5
2.0 10000 15000 20000 Maximum monetary loss (¥/hour)	1 <u> </u>	00 15000 20000 n monetary loss (¥/hour)	2.0
(a)		(b)	

Utilization ratio

Figure 5: Tactic decisions and performance metrics of Operator 2 against maximum loss (both operators maximize ridership). (a) Fleet size and fare. (b) Ridership and bike utilization rate. (Operator 1's maximum loss is \$5000/hr.)

returns to investment are evident: the curves for both the fleet size and the fare gradually level off as the profit target stretches further into the negative territory (see Figure 5a). Moreover, Figure 5b indicates a fourfold increase in Operator 2's operating losses (from \$5,000/hr to \$20,000/hr) barely doubles its ridership.

7.4.2 Operational characteristics

Fleet size

Two operational features are examined in this section: unit bike acquisition cost and rebalancing efficiency. The former includes the cost of purchasing and maintaining a shared bike amortized over its life cycle (i.e., the parameter β_0), while the latter is measured by the average number of rebalancing trips needed to maintain a stable level of service per each bike trip (i.e., the parameter α). A smaller α corresponds to a greater rebalancing efficiency, hence a lower rebalancing cost. For simplicity, the two operators are assumed to have the same upper-level action in this section.

Figure 6: System performance metrics in an asymmetric duopoly with profit-seeking operators. Three tested scenarios are (i) operators are identical; (ii) the acquisition cost of Operator 1 is half of that of Operator 2; (iii) the rebalancing efficiency of Operator 1 is twice that of Operator 2.

The first experiment considers profit-seeking operators, and consists of three scenarios (i) the base scenario where the two operators are identical; (ii) the acquisition cost of Operator 1 is half of Operator 2's; (iii) the rebalancing efficiency of Operator 1 doubles that of Operator 2's. Figure 6 reports four performance metrics in the three scenarios: profit, ridership, fare, and fleet size.

As expected, in Scenario (i), all performance metrics of the operators are the same. When Operator 1's acquisition cost is reduced by half (Scenario (ii)), it raises fare from ± 0.743 /km to ± 0.826 /km (see Figure 6c) and fleet size from 126,786 to 213,765 (see Figure 6d). Accordingly, Operator 1's ridership increases by 22% (Figure 6b) and its profit nearly doubled, rising from $\pm 6,850$ /hr to $\pm 12,966$ /hr (see Figure 6a). In contrast, under competitive pressure, Operator 2 is forced to reduce its fleet size to control the cost and to lower its fare to compensate for the degraded level of service. As a result, while the overall DLB market produces more profit and serves more trips, Operator 2 is much worse off compared to the benchmark. A similar pattern emerges in Scenario (iii). Equipped with better rebalancing efficiency, Operator 1 rakes in greater profit and ridership, by raising the price and expanding the fleet. However, the relative advantage enjoyed by Operator 1 is noticeably smaller than that in Scenario (ii).

Figure 7 reports the results of the second experiment where both operators maximize ridership without running a deficit. We similarly construct three scenarios: (iv) the base scenario where the two operators are identical; (v) the acquisition cost of Operator 1 is one percent lower than that of Operator 2; (vi) the rebalancing efficiency of Operator 1 is one percent better that of Operator 2. In all scenarios, the profit earned by either operator is zero because that is the profit target. We can see that Operator 1 enjoys a compelling competitive advantage across the board over Operator 2, even with a seemingly minute improvement in operational efficiency. With a slightly lower acquisition cost, for example, Operator 1 achieves a market share 65% higher than its competitor (see Figure 7b). The effect of rebalancing cost is less dramatic, but still substantially stronger than that revealed in the first experiment: an 8% gain in the market share for a one percent cost reduction.

Figure 7: System performance metrics in an asymmetric duopoly with ridership-maximizing and profit-neutral operators. Three tested scenarios are: (iv) the base scenario where the two operators are identical; (v) the acquisition cost of Operator 1 is one percent lower than that of Operator 2; (vi) the rebalancing efficiency of Operator 1 is one percent better that of Operator 2.

While many of the above results are expected, the last finding is surprising. It suggests that the operational characteristics matter much more when the operators seek market dominance, and that a small operational advantage could swing the market position wildly. On the bright side, such a hyper-intense environment may motivate the operators to focus on the betterment of their operations (e.g., bike design and manufacturing and rebalancing strategies). However, for regulators, the situation poses a challenge because it may lead to instability and unpredictability.

7.5 Sensitivity analysis

We first test the sensitivity of Scenario DU-p and DU-r (defined in Section 7.1) to the competition factor k introduced in Equation (7). Recall that the value of k measures how sensitive the demand distribution between the two operators is to fare discrepancy. Figure 8 reports the results corresponding to k being set to 20%, 100% and 500% of the default value (i.e., 23200 trips/¥). When travelers are highly sensitive to price (i.e. large k), profit-maximizing operators are forced to lower fares to protect their market share, which depresses the total profit achievable (see Figure 8a). The same mechanism is at work when the operators seek to maximize ridership. That is, high price sensitivity drives down price through competition, which then attracts more riders (see Figure 8b).

We next consider how the number of operators in a DLB market might affect its performance, especially the total ridership and profit for the operators. We consider a relatively mature market in which all operators seek to maximize profit. Figure 9a reports ridership and social welfare corresponding to different numbers of operators. As the number of operators increases, both ridership and social welfare first rise sharply, indicating the system benefits from competition. However, the incremental advantages of introducing an additional operator diminish rapidly, and the benefit derived from market expansion becomes negligible once the market reaches a total of four operators. In the case of social welfare, the additional operator actually becomes counterproductive once the market is saturated by competition. Thus, one may argue that, in this case, there is an optimal number of operators that a city may wish to allow to enter its market. Of course, a regulator may also cap the fleet size (or fare) for each operator, which may

Figure 8: Sensitivity of the system performance to the competition factor (k) in a duopoly where both operators maximize profit (a) or ridership without a deficit (b).

Figure 9: System performance metrics in an oligopoly market with different numbers of profitmaximizing operators. (a) Total ridership and social welfare. (b) Profit.

affect the trend observed here. In the interest of space, we leave a more in-depth study to future research.

From the perspective of the operators, the competition is a curse. Figure 9b shows that the total profit shared by all operators declines precipitously with the number of operators in the market. With four operators, which are "socially optimal", each operator's profit is less than 2% of that in a monopolistic market. Thus, if an operator's ultimate target is to make money, the only way to achieve it is by driving most, if not all, rivals out of the market. This logic might explain why the major DLB startups in China were committed to the pipedream of "winner-take-all".

8 Conclusions

In this paper, we modeled the inter-operator competition in a dockless bike-sharing (DLB) market as a dynamic game. Each DLB operator is first committed to an action tied to a specific objective, such as maximizing profit. Then, the operators play a lower-level game to reach a subgame perfect Nash equilibrium, by making tactic decisions (e.g., pricing and fleet sizing). We defined the Nash equilibrium under weak preference (NEWP) and under strong preference (NESP) to characterize the likely outcomes of the dynamic game, and formulated the demand-supply equilibrium of a DLB market that accounts for key DLB operational features and travelers' mode choice. Our analysis of the demand-supply equilibrium confirmed the intuition that an operator can always expect to gain market share by putting more bikes on streets. We also found a free rider effect. That is, lowering the price could be a double-edged sword, because the induced demand could benefit not only the operator that does cut the price, but also those that do not.

Using the oligopoly competition game model calibrated with empirical data from Chengdu, China, we sought to explain the instability of an unregulated DLB market that underlay the spectacular rise and quick fall of the industry in China. We showed that, when an operator is determined to dominate the market at any cost, other operators have no choice but to follow suit if they wish to stay in the game. This dilemma creates a race to the bottom, in the sense that everyone is basically competing to lose more money. That is not the end of the story. Remarkably, if everyone attempts to maximize ridership, even a slight improvement in the acquisition cost of bikes can swing the outcome wildly, an ominous sign of high volatility. Moreover, even if every operator agrees to focus on making money rather than seeking dominance, the profitability still plunges quickly with the number of players. Thus, left to its own devices, the DLB market may be doomed to implode under competitive pressure, as we have witnessed in China.

Having thus demonstrated that the DLB industry creates a competition for losers, we then explore the possibility of regulating it. We conducted experiments with two regulatory policies: a fleet cap and a price control. We found that a fleet cap, if implemented properly, can be effective for not only preventing market failure but also improving social welfare. Moreover, for the benefit of society, a city should not have more than a handful of operators. Our results suggest that social welfare peaks when the number of operators is four in Chengdu, though at that point, profitability has already sunk so low that it is doubtful any private investors would be impressed. Finally, price control is not very useful, simply because the real problem was never the high price, but too many bikes.

Our model was calibrated with a cross-sectional trip data set collected by a single operator, which does not capture any market dynamics associated with competition. To a certain extent, therefore, the predictions given by the model are but theoretical speculations. It does correctly predict the collapse of an unregulated market, but one cannot know for sure if the mechanisms embedded in our model agree with the real ones. A future study that strives to fix this short-coming will need to re-calibrate the model with time-series data of multiple operators.

The present study assumes DLB operators are committed to maximizing either profit or ridership. In reality, their objectives may encompass both profitability and market share; a "public" operator may prioritize social welfare over these measures. More likely than not, the business decisions of the operators are driven by a combination of all the conflicting objectives. As a result, the action at the upper level is not to choose one from several targets (a discrete choice), but how to best weigh them (a continuous one). A future study may extend the current game-theoretic framework to allow such a general objective.

Acknowledgment

The research was supported by the US National Science Foundation under the award number CMMI 2225087.

References

- Kenneth J Arrow and Gerard Debreu. Existence of an equilibrium for a competitive economy. *Econometrica: Journal of the Econometric Society*, pages 265–290, 1954.
- Atilim Gunes Baydin, Barak A Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark Siskind. Automatic differentiation in machine learning: A survey. *Journal of Marchine Learning Research*, 18:1–43, 2018. ISSN 1532-4435.
- Moshe E Ben-Akiva and Steven R Lerman. *Discrete choice analysis: theory and application to travel demand,* volume 9. MIT press, 1985.
- Masha Borak. Mobike vs ofo: The race for the world's bike rental market. http://technode.com/2017/09/22/how-mobike-and-ofo-are-planning-to-win-the-globalbike-rental-race/, September 2017.
- Luitzen Egbertus Jan Brouwer. über abbildung von mannigfaltigkeiten. *Mathematische annalen*, 71(1):97–115, 1911.
- Guangyu Cao, Ginger Zhe Jin, Xi Weng, and Li-An Zhou. Market-expanding or Market-stealing? Competition with network effects in bike-sharing. *The RAND Journal of Economics*, 52(4):778–814, December 2021. ISSN 0741-6261, 1756-2171. doi: 10.1111/1756-2171.12391.
- A. Charnes, W. W. Cooper, M. J. L. Kirby, and W. Raike. Regulatory Models for Pricing and Evaluation of Transport Services. *Transportation Science*, 6(1):15–31, February 1972. ISSN 0041-1655, 1526-5447. doi: 10.1287/trsc.6.1.15.
- Yujing Chen, Dong Wang, Kehong Chen, Yong Zha, and Gongbing Bi. Optimal pricing and availability strategy of a bike-sharing firm with time-sensitive customers. *Journal of Cleaner Production*, 228:208–221, August 2019. ISSN 09596526. doi: 10.1016/j.jclepro.2019.04.151.
- Zheyan Chen, Dea Van Lierop, and Dick Ettema. Dockless bike-sharing systems: What are the implications? *Transport Reviews*, 40(3):333–353, May 2020. ISSN 0144-1647, 1464-5327. doi: 10.1080/01441647.2019.1710306.
- Tsan-Ming Choi, Sai-Ho Chung, and Xiaopo Zhuo. Pricing with risk sensitive competing container shipping lines: Will risk seeking do more good than harm? *Transportation Research Part B: Methodological*, 133:210–229, March 2020. ISSN 01912615. doi: 10.1016/j.trb.2020.01.003.
- Carlos F Daganzo. An approximate analytic model of many-to-many demand responsive transportation systems. *Transportation Research*, 12(5):325–333, 1978. ISSN 0041-1647. doi: 10.1016/0041-1647(78)90007-2.

- Kalyanmoy Deb. Multi-objective optimization. In *Search methodologies: Introductory tutorials in optimization and decision support techniques*, pages 403–449. Springer, 2013.
- George W. Douglas. Price Regulation and Optimal Service Standards: The Taxicab Industry. *Journal of Transport Economics and Policy*, 6(2):116–127, 1972.
- Elliot Fishman. Bikeshare: A Review of Recent Literature. *Transport Reviews*, 36(1):92–113, 2016. ISSN 14645327. doi: 10.1080/01441647.2015.1033036.
- Daniel Freund, Shane G. Henderson, and David B. Shmoys. Minimizing Multimodular Functions and Allocating Capacity in Bike-Sharing Systems. *Operations Research*, 70(5):2715–2731, September 2022. ISSN 0030-364X, 1526-5463. doi: 10.1287/opre.2022.2320.
- Chenyi Fu, Shoufeng Ma, Ning Zhu, Qiao-Chu He, and Hai Yang. Bike-sharing inventory management for market expansion. *Transportation Research Part B: Methodological*, 162:28–54, August 2022. ISSN 01912615. doi: 10.1016/j.trb.2022.05.009.
- Tianqi Gu, Inhi Kim, and Graham Currie. To be or not to be dockless: Empirical analysis of dockless bikeshare development in China. *Transportation Research Part A: Policy and Practice*, 119(November 2018):122–147, 2019. ISSN 09658564. doi: 10.1016/j.tra.2018.11.007.
- Pu He, Fanyin Zheng, Elena Belavina, and Karan Girotra. Customer Preference and Station Network in the London Bike-Share System. *Management Science*, 67(3):1392–1412, March 2021. ISSN 0025-1909, 1526-5501. doi: 10.1287/mnsc.2020.3620.
- Sergio Jara-Díaz, André Latournerie, Alejandro Tirachini, and Félix Quitral. Optimal pricing and design of station-based bike-sharing systems: A microeconomic model. *Economics of Transportation*, 31:100273, September 2022. ISSN 22120122. doi: 10.1016/j.ecotra.2022.100273.
- Zhoutong Jiang and Yanfeng Ouyang. Pricing and resource allocation under competition in a docked bike-sharing market. *Transportation Research Part C: Emerging Technologies*, 143:103833, October 2022. ISSN 0968090X. doi: 10.1016/j.trc.2022.103833.
- Zhoutong Jiang, Chao Lei, and Yanfeng Ouyang. Optimal investment and management of shared bikes in a competitive market. *Transportation Research Part B: Methodological*, 135:143–155, 2020. ISSN 01912615. doi: 10.1016/j.trb.2020.03.007.
- Yu Jing. How China is coping with its piles of abandoned shared bikes. https://news.cgtn.com/news/2019-09-27/How-China-is-coping-with-its-piles-of-abandoned-shared-bikes-KjemNhws4E/index.html, 2019.
- Samuel W. Jordan and Stephanie Ivey. Complete Streets: Promises and Proof. *Journal of Urban Planning and Development*, 147(2):04021011, June 2021. ISSN 0733-9488, 1943-5444. doi: 10.1061/ (ASCE)UP.1943-5444.0000684.
- Ashish Kabra, Elena Belavina, and Karan Girotra. Bike-share systems: Accessibility and availability. *Management Science*, 66(9):3803–3824, 2020. ISSN 15265501. doi: 10.1287/mnsc.2019.3407.

Yoko Kubota. Bike-Share Startup in China Veers Off Course - WSJ. 2018.

- Hisashi Kurata, Dong-Qing Yao, and John J. Liu. Pricing policies under direct vs. indirect channel competition and national vs. store brand competition. *European Journal of Operational Research*, 180(1):262–281, July 2007. ISSN 03772217. doi: 10.1016/j.ejor.2006.04.002.
- Gilbert Laporte, Frédéric Meunier, and Roberto Wolfler Calvo. Shared mobility systems: An updated survey. *Annals of Operations Research*, 271(1):105–126, 2018. ISSN 15729338. doi: 10.1007/s10479-018-3076-8.
- Xi Li, Yanzhi Li, and Ying-Ju Chen. Strategic inventories under supply chain competition. *Manufacturing & Service Operations Management*, 24(1):77–90, 2022.
- Andreu Mas-Colell, Michael Dennis Whinston, Jerry R Green, et al. *Microeconomic theory*, volume 1. Oxford university press New York, 1995.
- Michael E Porter. Industry structure and competitive strategy: Keys to profitability. *Financial analysts journal*, 36(4):30–41, 1980.
- Susan Shaheen, Stacey Guzman, and Hua Zhang. Bikesharing in Europe, the Americas, and Asia. *Transportation Research Record*, (2143):159–167, 2010. ISSN 03611981. doi: 10.3141/2143-20.
- Susan A Shaheen, Elliot W Martin, Adam P Cohen, Nelson D Chan, Mike Pogodzinsk, Elliot W Martin, and Nelson D Chan. Public Bikesharing in North America During a Period of Rapid Expansion: Understanding Business Models, Industry Trends & User Impacts. *Mineta Transportation Institute Report* 12-29, pages 2–3, 2014.
- C. S. Shui and W. Y. Szeto. A review of bicycle-sharing service planning problems. *Transportation Research Part C: Emerging Technologies*, 117(April 2019):102648, 2020. ISSN 0968090X. doi: 10. 1016/j.trc.2020.102648.
- Francesc Soriguera and Enrique Jiménez-Meroño. A continuous approximation model for the optimal design of public bike-sharing systems. *Sustainable Cities and Society*, 52:101826, January 2020. ISSN 22106707. doi: 10.1016/j.scs.2019.101826.
- Justin Spinney and Wen-I Lin. Are you being shared? Mobility, data and social relations in Shanghai's Public Bike Sharing 2.0 sector. *Applied Mobilities*, 3(1):66–83, 2018. ISSN 2380-0127. doi: 10.1080/23800127.2018.1437656.
- Peter Thiel and Blake Masters. *Zero to one: Notes on startups, or how to build the future*. Currency, 2014.
- M. Ali Ülkü and James H. Bookbinder. Optimal quoting of delivery time by a third party logistics provider: The impact of shipment consolidation and temporal pricing schemes. *European Journal of Operational Research*, 221(1):110–117, August 2012. ISSN 03772217. doi: 10.1016/j. ejor.2012.03.021.
- Yao Wang, Huan Jin, Shiyuan Zheng, Wen-Long Shang, and Kun Wang. Bike-sharing duopoly competition under government regulation. *Applied Energy*, 343:121121, August 2023. ISSN 03062619. doi: 10.1016/j.apenergy.2023.121121.

- Jie Yang. Bike Sharing in China From Bicycle Graveyards to a Regulated Industry. https://www.law.georgetown.edu/environmental-law-review/blog/bike-sharing-inchina-from-bicycle-graveyards-to-a-regulated-industry/, April 2020.
- Hongyu Zheng, Kenan Zhang, Marco Nie, Pengyu Yan, and Yuan Qu. How Many Are Too Many? Analyzing Dockless Bikesharing Systems with a Parsimonious Model. *Transportation Science*, 2023. URL https://pubsonline.informs.org/doi/abs/10.1287/trsc.2022.0304.
- Wei Zheng, Bo Li, and Dong-Ping Song. Effects of risk-aversion on competing shipping lines' pricing strategies with uncertain demands. *Transportation Research Part B: Methodological*, 104: 337–356, October 2017. ISSN 01912615. doi: 10.1016/j.trb.2017.08.004.
- Wei-Hua Zhou and Chung-Yee Lee. Pricing and competition in a transportation market with empty equipment repositioning. *Transportation Research Part B: Methodological*, 43(6):677–691, July 2009. ISSN 01912615. doi: 10.1016/j.trb.2008.12.001.

A List of notations

	Parameter	Notation
	Fare schedule	f_i
	Fleet size	B_i
	Number of idle bikes	n _i
	Market share	Q_i
operator <i>i</i>	Market proportion	m_i
	Rebalancing trip distance	L_i
	Total bike usage time per hour	U_i
	Total bike rebalancing time per hour	R_i
	Profit per hour	Π_i
	Access time	а
	Average fare of DLB service	f
	Traveler's trip length	1
	Lower bounds for the bike trip length	<u>1</u>
	Upper bounds for the bike trip length	$\frac{l}{\overline{l}}$
	CDF of traveler's trip length	$G(\cdot)$
	Value of time	μ
	Walking speed	v_w
	Biking speed	v_b
	Driving speed	v_d
Market	Rebalancing speed	v_r
	Variable driving cost	f_d
	Fixed driving cost	τ
	Access factor	δ
	Study area	Α
	Total number of idle bikes	п
	Number of unique bike locations	ñ
	Rebalancing frequency	α
	Bike acquisition cost	β_0
	Unit bike rebalancing cost	β_1
	Total demand rate	Q
	bike-sharing demand rate	Q
	Competition factor	k_{ij}

Table A.1: List of notations

B Proof of Proposition 2

Consider a DLB duopoly, i.e., $\mathbb{I} = \{1, 2\}$ and suppose $f_1 \leq f_2$. We first prove that $\partial Q_1 / \partial f_1 < 0$ always holds. Next, we demonstrate that $\partial Q_2 / \partial f_2 < 0$ if $f_2 - f_1 < \frac{\left[Q_2 n_2 - (n_1 + n_2)k_{12}f/\eta_f\right]Q}{(n_1 + n_2)k_{12}Q_2}$. Lastly, we show that the analysis of $\partial Q_1 / \partial f_2$ and $\partial Q_2 / \partial f_1$ can be conducted similarly, while giving the

conditions under which the monotonicity of Q_1 (Q_2) with respect to f_2 (f_1) holds.

First, taking the derivative of operator 1's ridership with respect to f_1 yields

$$\frac{\partial Q_1}{\partial f_1} = \frac{n_1}{n_1 + n_2} \frac{\partial Q}{\partial f_1} - k_{12},\tag{24}$$

Equation (6) indicates

$$f = m_1 f_1 + (1 - m_1) f_2 = m_1 (f_1 - f_2) + f_2.$$
 (25)

Accordingly, the derivative of f with respect to f_1 is

$$\frac{\partial f}{\partial f_1} = \frac{\partial m_1}{\partial f_1} (f_1 - f_2) + m_1.$$
(26)

Substituting Equation (7) into Equation (5), and taking derivative on both sides with respect to f_1 yields

$$\frac{\partial m_1}{\partial f_1} = \frac{k_{12}}{Q^2} (f_1 - f_2) \frac{\partial Q}{\partial f} \frac{\partial f}{\partial f_1} - \frac{k_{12}}{Q}.$$
(27)

We shall show Equations (26) and (27) cannot hold at the same time unless $\frac{\partial f}{\partial f_1} > 0$. To see this, let us suppose $\frac{\partial f}{\partial f_1} \leq 0$ and recall that $\frac{\partial Q}{\partial f} < 0$ and per assumption $f_1 - f_2 \leq 0$. Therefore, RHS of Equation (27) is negative, indicating $\frac{\partial m_1}{\partial f_1} < 0$. Accordingly, per Equation (26) $\frac{\partial f}{\partial f_1} > 0$, a contradiction with our assumption that $\frac{\partial f}{\partial f_1} \leq 0$. Therefore, it must hold that $\frac{\partial f}{\partial f_1} > 0$. Note that $\frac{\partial Q}{\partial f_1} = \frac{\partial Q}{\partial f} \frac{\partial f}{\partial f_1} < 0$ (recall that $\frac{\partial Q}{\partial f} < 0$ by definition). Using this condition in Equation (24), we arrive at $\frac{\partial Q_1}{\partial f_1} < 0$. This completes the first part of proof.

Next, taking the derivative of operator 2's ridership with respect to f_2 yields

$$\frac{\partial Q_2}{\partial f_2} = \frac{n_2}{n_1 + n_2} \frac{\partial Q}{\partial f_2} - k_{12}.$$
(28)

From Equation (6), we have $f = \frac{Q_1f_1+Q_2f_2}{Q_1+Q_2}$. Take the derivative with respect to f_1 on both sides yields

$$\frac{\partial f}{\partial f_1} = \frac{Q_1 Q - (f_1 - f_2) k_{12} Q + \frac{(Q_2 n_1 - Q_1 n_2)(f_1 - f_2)}{n_1 + n_2} \frac{\partial Q}{\partial f_1}}{(Q_1 + Q_2)^2}.$$
(29)

Let $\eta_f = \frac{\partial Q/Q}{\partial f/f}$ be the elasticity of total bike-sharing demand with respect to f. Accordingly, we can rewrite $\frac{\partial f}{\partial f_1}$ as

$$\frac{\partial f}{\partial f_1} = \frac{\partial f}{\partial Q} \frac{\partial Q}{\partial f_1} = \frac{f}{Q\eta_f} \frac{\partial Q}{\partial f_1}.$$
(30)

Combining Equation (29) and Equation (30) we can solve

$$\frac{\partial Q}{\partial f_1} = \frac{Q_1 Q - (f_1 - f_2) k_{12} Q}{\frac{f Q}{\eta_f} - \frac{(Q_2 n_1 - Q_1 n_2)(f_1 - f_2)}{n_1 + n_2}}.$$
(31)

From the first part of proof, we know $\frac{\partial Q}{\partial f_1} < 0$. As the numerator of the RHS in Equation (31) is positive (recall that $f_1 \leq f_2$ by definition), the denominator of Equation (31) has to be negative, i.e., $\frac{fQ}{\eta_f} - \frac{(Q_2n_1 - Q_1n_2)(f_1 - f_2)}{n_1 + n_2} < 0$.

Repeating the above procedure for the derivative with respect to f_2 we obtain

$$\frac{\partial Q}{\partial f_2} = \frac{Q_2 Q + (f_1 - f_2) k_{12} Q}{\frac{f Q}{\eta_f} - \frac{(Q_2 n_1 - Q_1 n_2)(f_1 - f_2)}{n_1 + n_2}}.$$
(32)

Plugging Equation (32) in Equation (28) yields

$$\frac{\partial Q_2}{\partial f_2} = \frac{\left\{\frac{\left[Q_2 n_2 - (n_1 + n_2)k_{12} f/\eta_f\right]Q}{(n_1 + n_2)k_{12} Q_2} - (f_2 - f_1)\right\} (n_1 + n_2)k_{12} Q_2}{(n_1 + n_2)fQ/\eta_f - (Q_2 n_1 - Q_1 n_2)(f_1 - f_2)}.$$
(33)

Recall that we have $\frac{fQ}{\eta_f} - \frac{(Q_2n_1-Q_1n_2)(f_1-f_2)}{n_1+n_2} < 0$ from Equation (31). Thus, the denominator of the RHS in Equation (33) is negative. It then follows that $\frac{\partial Q_2}{\partial f_2} < 0$ if the numerator of Equation (33)'s RHS is positive, i.e., $f_2 - f_1 < d_2 \equiv \frac{[Q_2n_2 - (n_1+n_2)k_{12}f/\eta_f]Q}{(n_1+n_2)k_{12}Q_2}$. This completes the second part of proof.

We can repeat the above analysis (details omitted for brevity) to obtain $\frac{\partial Q_1}{\partial f_2}$ and $\frac{\partial Q_2}{\partial f_1}$:

$$\frac{\partial Q_1}{\partial f_2} = \frac{\left[\frac{(Q_2n_1 + (n_1 + n_2)k_{12}f/\eta_f)Q}{(n_1 + n_2)k_{12}Q_1} - (f_2 - f_1)\right](n_1 + n_2)k_{12}Q_1}{(n_1 + n_2)fQ/\eta_f - (Q_2n_1 - Q_1n_2)(f_1 - f_2)},$$
(34)

$$\frac{\partial Q_2}{\partial f_1} = \frac{\left[\frac{\left(Q_1n_2 + (n_1 + n_2)k_{12}f/\eta_f\right)Q}{(n_1 + n_2)k_{12}Q_2} + (f_2 - f_1)\right](n_1 + n_2)k_{12}Q_2}{(n_1 + n_2)fQ/\eta_f - (Q_2n_1 - Q_1n_2)(f_1 - f_2)}.$$
(35)

Based on the same method used to determine the sign of Equation (33), we can establish that $\frac{\partial Q_1}{\partial f_2} < 0$ if $f_2 - f_1 < d_3 \equiv \frac{[Q_2 n_1 + (n_1 + n_2)k_{12}f/\eta_f]Q}{(n_1 + n_2)k_{12}Q_1}$, and $\frac{\partial Q_2}{\partial f_1} < 0$ if $f_2 - f_1 > d_1 \equiv -\frac{[Q_1 n_2 + (n_1 + n_2)k_{12}f/\eta_f]Q}{(n_1 + n_2)k_{12}Q_2}$. Finally, note that $d_2 - d_3 = \frac{[(f_2 - f_1)Q_2 - Q_f/\eta_f]Q}{Q_1Q_2} > 0 \rightarrow d_2 > d_3$.

C Proof of Proposition 3

Let us first substitute L_i in Equation (8) with Equation (13) and take derivative with respect to B_i on both sides:

$$1 = \frac{\partial n_i^*}{\partial B_i} + \frac{\bar{Q}}{v_b} \left(m_i \bar{l} \frac{\partial G(\bar{l})}{\partial \bar{l}} \frac{\partial \bar{l}}{\partial B_i} - m_i \underline{l} \frac{\partial G(\underline{l})}{\partial \underline{l}} \frac{\partial \underline{l}}{\partial B_i} + \frac{\partial m_i}{\partial B_i} \int_{\underline{l}}^{\bar{l}} x dG(x) \right) + \frac{\delta}{2v_r} \sqrt{\frac{\tilde{n}_i A\alpha}{n_i^* Q_i}} \left(Q_i \frac{\partial (n_i^* / \tilde{n}_i)}{\partial B_i} + \frac{n_i^*}{\tilde{n}_i} \frac{\partial Q_i}{\partial B_i} \right).$$
(36)

We shall show the above equality cannot hold unless $\frac{\partial n_i^*}{\partial B_i} > 0$. To see this, suppose $\frac{\partial n_i^*}{\partial B_i} \leq 0$. Note that $\frac{\partial G(\bar{l})}{\partial \bar{l}} > 0$ and $\frac{\partial G(\underline{l})}{\partial \underline{l}} > 0$ per the property of CDF. With fixed n_j , $\forall j \in -i$, the partial derivatives in Equation (36) can be expanded as follows

$$\frac{\partial \bar{l}}{\partial B_i} = \frac{\partial \bar{l}}{\partial a} \frac{\partial a}{\partial n_i^*} \frac{\partial n_i^*}{\partial B_i},\tag{37}$$

$$\frac{\partial \underline{l}}{\partial B_i} = \frac{\partial \underline{l}}{\partial a} \frac{\partial a}{\partial n_i^*} \frac{\partial n_i^*}{\partial B_i},\tag{38}$$

$$\frac{\partial m_i}{\partial B_i} = \frac{1}{\sum_{j \in \mathbb{I}} n_j} \left[\frac{\sum_{j \in -i} n_j}{\sum_{j \in \mathbb{I}} n_j} + \frac{\sum_{j \in -i} k_{ij} (f_i - f_j)}{Q} \eta_n \right] \frac{\partial n_i^*}{\partial B_i},\tag{39}$$

$$\frac{\partial(n_i^*/\tilde{n}_i)}{\partial B_i} = \frac{1}{\tilde{n}_i^2} \left(\tilde{n}_i - n_i^* \frac{\partial \tilde{n}_i}{\partial n_i^*} \right) \frac{\partial n_i^*}{\partial B_i},\tag{40}$$

$$\frac{\partial Q_i}{\partial B_i} = \left[\frac{\sum_{j \in -i} n_j}{\left(\sum_{j \in \mathbb{I}} n_j\right)^2} Q + \frac{n_i^*}{\sum_{j \in \mathbb{I}} n_j} \frac{\partial Q}{\partial n_i^*} \right] \frac{\partial n_i^*}{\partial B_i}.$$
(41)

From Equation (3), we can see that $\partial \bar{l}/\partial a \leq 0$ and $\partial \underline{l}/\partial a \geq 0$. Besides, Equation (10) indicates $\partial a/\partial n_i^* < 0$. Therefore, we have $\partial \bar{l}/\partial B_i \leq 0$ and $\partial \underline{l}/\partial B_i \geq 0$ per the assumption that $\frac{\partial n_i^*}{\partial B_i} \leq 0$. From Equation (39), $\sum_{j \in -i} k_{ij}(f_i - f_j) \geq 0 \rightarrow \frac{\partial m_i}{\partial B_i} \leq 0$. If $\sum_{j \in -i} k_{ij}(f_i - f_j) < 0$, the term in the square bracket of Equation (39) can be rewritten as $\left[\sum_{j \in -i} k_{ij}(f_i - f_j)\right] (\eta_n - 1) + Q - Q_i$. Since $\eta_n \leq 1$ per the condition given in the proposition, the term in the square bracket of Equation (39) is positive. Therefore, we know $\frac{\partial m_i}{\partial B_i} \leq 0$ always holds independent of the sign of $\sum_{j \in -i} k_{ij}(f_i - f_j)$. Now we have shown that the second term in the RHS of Equation (36) must be non-positive.

The sign of $\frac{\partial (n_i^*/\tilde{n}_i)}{\partial B_i}$ depends on that of $\tilde{n}_i - n_i^* \frac{\partial \tilde{n}_i}{\partial n_i^*}$. Note that

$$\frac{\partial}{\partial n_i^*} \left(\tilde{n}_i - n_i^* \frac{\partial \tilde{n}_i}{\partial n_i^*} \right) = -n_i^* \frac{\partial^2 \tilde{n}_i}{\partial n_i^{*2}}.$$
(42)

As per Assumption 3, $\partial^2 \tilde{n}_i / \partial n_i^{*2} \leq 0$. Also, if $n_i^* = 0$, $\tilde{n}_i = z(0) = 0$ per definition. Hence $\tilde{n}_i - n_i^* \frac{\partial \tilde{n}_i}{\partial n_i^*} = 0$ when $n_i^* = 0$. As its gradient is non-negative when $n_i^* > 0$ as per Equation (42), it must be non-negative for $n_i^* \geq 0$. Thus, per the assumption $\partial n_i^* / \partial B_i \leq 0$, $\partial (n_i^* / \tilde{n}_i) / \partial B_i \leq 0$.

Finally, $\partial Q / \partial n_i^*$ can be expanded as

$$\frac{\partial Q}{\partial n_i^*} = \bar{Q} \left(\frac{\partial G(\bar{l})}{\partial \bar{l}} \frac{\partial \bar{l}}{\partial a} \frac{\partial a}{\partial n_i^*} - \frac{\partial G(\underline{l})}{\partial \underline{l}} \frac{\partial \underline{l}}{\partial a} \frac{\partial a}{\partial n_i^*} \right) \ge 0.$$
(43)

Equation (41) shows that $\partial Q_i / \partial B_i \leq 0$ when $\partial n_i^* / \partial B_i \leq 0$, which indicate the third term in the RHS of Equation (36) is also non-positive.

To summarize, with the assumption $\partial n_i^* / \partial B_i \le 0$, we show that RHS of Equation (36) must be non-positive, which leads to a contradiction since Equation (36) dictates it equal 1 at equilibrium. Therefore, $\partial n_i^* / \partial B_i > 0$, which completes the proof.

D Differentiation of market demand-supply equilibrium

The value of $\frac{\partial L_i}{\partial y_i}$ depends on the derivatives of market performance (such as Q_i, Q, Π_i) with respect to operator *i*'s tactics, i.e., B_i and f_i . In what follows, we explain how to compute $\frac{\partial Q_i}{\partial B_i}$ using automatic differentiation (Baydin et al., 2018) in each iteration. The other derivatives can be computed similarly.

Taking derivative of B_i on both sides of Equation (7) yields:

$$\frac{\partial Q_i}{\partial B_i} = \frac{n_i}{\sum_{j \in \mathbb{I}} n_j} \frac{\partial Q}{\partial B_i} + \frac{Q}{\left(\sum_{j \in \mathbb{I}} n_j\right)^2} \left(\frac{\partial n_i}{\partial B_i} \sum_{j \in \mathbb{I}} n_j - n_i \sum_{j \in \mathbb{I}} \frac{\partial n_j}{\partial B_i}\right).$$
(44)

To calculate $\frac{\partial Q}{\partial B_i}$, we take derivative of B_i on both sides of Equation (4). leading to

$$\frac{\partial Q}{\partial B_i} = \bar{Q} \left(\frac{\partial G(\bar{l})}{\partial \bar{l}} \frac{\partial \bar{l}}{\partial B_i} - \frac{\partial G(\underline{l})}{\partial \underline{l}} \frac{\partial \underline{l}}{\partial B_i} \right), \tag{45}$$

where $\frac{\partial \bar{l}}{\partial B_i}$ and $\frac{\partial l}{\partial \bar{B}_i}$ can be computed by Equation (3). Specifically, we have

$$\frac{\partial \bar{l}}{\partial B_i} = \frac{-\mu \left(f + \mu/v_b - d - \mu/v_d\right) \frac{\partial a}{\partial B_i} - \left(\tau - \mu a\right) \frac{\partial f}{\partial B_i}}{\left(f + \mu/v_b - d - \mu/v_d\right)^2},\tag{46}$$

$$\frac{\partial \underline{l}}{\partial B_{i}} = \frac{\mu \left(\mu/v_{w} - f - \mu/v_{b}\right) \frac{\partial a}{\partial B_{i}} + \mu a \frac{\partial f}{\partial B_{i}}}{\left(\mu/v_{w} - f - \mu/v_{b}\right)^{2}}.$$
(47)

Note also that from Equation (10)

$$\frac{\partial a}{\partial B_i} = -\frac{\delta\sqrt{A}}{v_w} \frac{1}{2\tilde{n}^{-3/2}} \frac{\partial\tilde{n}}{\partial n} \sum_{j\in\mathbb{I}} \frac{\partial n_j}{\partial B_i}.$$
(48)

Since the values of all parameters in Equations (44) - (48) are available at equilibrium, $\frac{\partial Q_i}{\partial B_i}$ is a function of $\frac{\partial f}{\partial B_i}$ and $\frac{\partial n_j}{\partial B_i}$, $\forall j \in \mathbb{I}$.

We next calculate the values of $\frac{\partial f}{\partial B_i}$ and $\frac{\partial n_i}{\partial B_i}$, $\forall j \in \mathbb{I}$. As per Proposition 1, the market equilibrium can be represented as a fixed point system of $[n_1, \ldots, n_I, f]$. Here, we denote it as functions: $f = \Gamma(n_1, \ldots, n_I, f), n_j = \Delta_j(n_1, \ldots, n_I, f), \forall j \in \mathbb{I}$. Taking derivative of B_i on both sides, we have

$$\frac{\partial f}{\partial B_i} = \frac{\partial \Gamma}{\partial B_i} + \sum_{e \in \Pi} \frac{\partial \Gamma}{\partial n_e} \frac{\partial n_e}{\partial B_i} + \frac{\partial \Gamma}{\partial f} \frac{\partial f}{\partial B_i}, \tag{49a}$$

$$\frac{\partial n_j}{\partial B_i} = \frac{\partial \Delta_j}{\partial B_i} + \sum_{e \in \mathbb{I}} \frac{\partial \Delta_j}{\partial n_e} \frac{\partial n_e}{\partial B_i} + \frac{\partial \Delta_j}{\partial f} \frac{\partial f}{\partial B_i}, \forall j \in \mathbb{I},$$
(49b)

where $\frac{\partial \Gamma}{\partial B_i}$, $\frac{\partial \Gamma}{\partial n_e}$, $\frac{\partial \Gamma}{\partial f}$, $\frac{\partial \Delta_j}{\partial B_i}$, $\frac{\partial \Delta_j}{\partial n_e}$, and $\frac{\partial \Delta_j}{\partial f}$, $\forall j, e \in \mathbb{I}$ can be evaluated numerically by Equations (6) and (15) using automatic differentiation.

Equation (49) is a linear equation system of $\frac{\partial f}{\partial B_i}$ and $\frac{\partial n_j}{\partial B_i}$, $\forall j \in \mathbb{I}$. Plugging the solution to the linear system into Equations (44) - (48), we can get $\frac{\partial Q_i}{\partial B_i}$. The other derivatives of the market performance with respect to y_i required for evaluating $\frac{\partial L_i}{\partial y_i}$ can be computed similarly, hence omitted here for brevity, which includes $\frac{\partial Q_i}{\partial f_i}$, $\frac{\partial Q}{\partial B_i}$, $\frac{\partial Q}{\partial f_i}$, $\frac{\partial \Pi_i}{\partial B_i}$, $\frac{\partial \Pi_i}{\partial f_i}$.