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Abstract

We model the oligopoly competition in a dockless bike-sharing (DLB) market as a dynamic
game. Each DLB operator is first committed to an action tied to a specific objective, such as
maximizing profit. Then, the operators play a lower-level game to reach a subgame perfect
Nash equilibrium, by making tactic decisions (e.g., pricing and fleet sizing). We define a Nash
equilibrium under either weak or strong preference to characterize the likely outcomes of the
dynamic game, and formulate the demand-supply equilibrium of a DLB market that accounts
for key operational features and mode choice. Using the oligopoly game model calibrated
with empirical data, we show that, if an operator seeks to maximize its market share with a
budget constraint, all other operators must either respond in kind or be driven out of the mar-
ket. When all operators compete for market dominance, even a slight efficiency edge gained
by one operator can significantly shift the outcome, which signals high volatility. Moreover,
even if all operators agree to focus on making money rather than ruinously seeking domi-
nance, profitability still plunges quickly with the number of operators. Taken together, the
results explain why an unregulated DLB market is often oversupplied and prone to collapse
under competition. We also show this market failure may be prevented by a fleet cap regula-
tion, which sets an upper limit on each operator’s fleet size.

Keywords: dockless bike-sharing, Nash equilibrium, oligopoly competition, fleet cap

1 Introduction

As a novel mode for short-distance travel, bike-sharing has gained traction in densely populated
urban areas in recent years. Compared to driving, biking is cheaper, healthier, and greener (Sha-
heen et al., 2010). Bike-sharing offers a cost-effective solution to the first and last-mile problem
that often inconveniences transit riders (Chen et al., 2020). In addition to promoting public trans-
portation, bike-sharing also can directly replace certain motorized trips. As it promises to reduce
vehicular traffic and mitigate environmental externalities (Fishman, 2016), bike-sharing has been
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heralded by many as a key ingredient in a multimodal transportation system that supports the
Complete and Green Streets Initiative (Jordan and Ivey, 2021). Despite its appeal, however, the
mass adoption of bike-sharing was hindered by the need to procure customized bikes and build
stations and docks that secure them. Shaheen et al. (2014) noted that a bike station can cost as
much as $40,000 and adding a dock costs another $3,000. Such a high infrastructure cost restricts
the spatial coverage of these docked bike-sharing systems and serves as a natural entry barrier
to would-be contenders.

Dockless bike-sharing (DLB) technology fundamentally altered this calculus (Fishman, 2016).
First, a DLB system enhances user experience markedly, by enabling riders to locate and unlock a
GPS-equipped bike using their smartphones, and to lock it away wherever they find most conve-
nient. Second, not only does this technology eliminate the need for a supporting infrastructure,
but it also provides novel access to a potentially large consumer base. These desirable properties
first caught the attention of venture capitalists in China and, starting from early 2015, they began
to pour money into the nascent industry (Yang, 2020). The result was a breathtaking expansion
that culminated in 2017, when 221 million registered users completed nearly 70 million trips per
day in China. At the peak, there were nearly seventy bike-sharing startups collectively holding
23 million bikes nationwide (Gu et al., 2019). The two unicorns produced by the industry, Ofo
and Mobike, launched ambitious plans to conquer international markets, and at one point their
bikes can be found on most continents around the world (Borak, 2017).

The tide began to turn in 2018, however. In some way, the industry was the victim of its own
success. The complete freedom the technology gives customers to retrieve and return bikes has
an unintended consequence: bikes were literally everywhere, including on the way of pedestrians
(Spinney and Lin, 2018). The problem was exacerbated by the low cost of entry, as starting a DLB
operation in a city requires virtually zero infrastructure investment. The intense competition
led to massive supply expansion and then nasty price wars. In August 2017, for example, Ofo
charged ¥1 per month for unlimited rides (Yang, 2020). In comparison, a single transit ride
typically costs ¥2 in China. While the public no doubt enjoyed the “free lunch” with some
amusement, most startups did not have the resources to sustain the heavy losses ensued. Even
the deep-pocketed players like Ofo could no longer properly look after their massive fleets. As
a result, more and more bikes, broken or otherwise, were left unattended, cluttering sidewalks
and other public spaces, sometimes like a giant pile of trash (Jing, 2019). By 2018, the outcry
became so loud that Chinese cities had to crack down on the industry with regulations that cap
the total number of DLB bikes. Soon after, most startups began to fail (Kubota, 2018). Even Ofo
and Mobike did not survive the crash.

The rise and fall of the DLB industry in China offers a cautionary tale about the risks of an
unregulated market with a low entry barrier. It is well known that, while low entry barriers can
promote competition and innovation, they may also lead to higher market volatility and poten-
tial challenges in achieving profitability due to intensified rivalry (Porter, 1980). There are also
limited economies of scale to be had, making it exceedingly difficult to establish a monopoly.
As Thiel and Masters (2014) noted, “competition is for losers” in such markets and good en-
trepreneurs should simply stay away from them.1 However, writing off the DLB industry as

1The point is that a market with hyper competition is no place to make money. Thiel’s favorite example is the
restaurant industry, which features intense competition, low entry barriers, and a high failure rate.
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unprofitable cannot be the only story here. After all, bike-sharing has a genuinely positive so-
cietal impact and should have its place in many of our cities that are haunted by the disease of
auto-dependency. The question is what, if anything, can be done to foster a healthy bike-sharing market
that is attractive to both users and private investors.

There is evidence that the regulations on bike-sharing in China, hastily enacted to rein in
the out-of-control growth, may be sub-optimal. Take Chengdu, China for example. The number
of shared bikes in the city center, which amounts to less than five million residents, peaked at
1.1 million in September 2018. Chengdu then introduced a fleet cap of 600,000 in May 2019
and further reduced it to 450,000 a year later.2 This might seem like a huge improvement.
However, using a stylized model calibrated with real data collected in the city, Zheng et al.
(2023) estimated that, even if the DLB market is centrally controlled for social good, the current
cap is still not effective and should be further reduced by another three quarters. If there is a
monopoly operator aiming at profit, the optimal fleet size is less than 60,000 bikes, which is,
unsurprisingly, accompanied by a lower level of service and a much higher price. Could the city
achieve a better outcome by introducing regulated competition? Indeed, Chengdu did exactly
that: issuing a few licenses and allocating a fleet quota to each licensed operator. However, to the
best of our knowledge, no analysis exists that can tell, supported by empirical evidence, whether
that is the optimal way to regulate the competition, or how far the number of licenses and the
quota are from the “optimal” values. The model developed by Zheng et al. (2023) is not suitable
for this task either because it does not allow for competition.

This study sets out to build an oligopoly version of Zheng et al. (2023)’s model. The compe-
tition is formulated as a dynamic game, in which each operator is first committed to an action
tied to a specific objective and then makes tactic decisions to achieve it. At the upper level, their
actions involve setting the target of operations, which may be either making money (profit max-
imization) or dominating the market (ridership maximization). Typically, the latter is viewed as
a (necessary) stepping stone to the former. To analyze how competition may shape the choice
of actions, we define a Nash equilibrium under either weak or strong preference to character-
ize the likely outcomes of the dynamic game. At the lower level, the tactics include both the
pricing and the fleet sizing decisions to achieve the objective associated with the action. Note
that the operator’s payoffs for the action and tactic decisions are deeply intertwined with each
other. Like the taxi market (Douglas, 1972), this interaction is further complicated by the fact
that the perceived level of service and price level are often determined by the supply decisions
of all operators collectively rather than that of each operator individually. The case in point is the
access time perceived by a user, which depends on the total number of idle bikes in a city, rather
than any single operator’s fleet size. In the case where the ridership-maximizing operator has
a budget constraint, its feasible set of tactics becomes influenced by the competitor’s decisions.
This leads to a generalized Nash equilibrium (GNE) as the outcome of the lower-level game.
Therefore, a bi-level dual gradient descent (BDGD) algorithm is developed to find a GNE given
upper-level decisions.

Based on the model calibrated with empirical data, we explain why the unregulated DLB
market is often oversupplied and prone to collapse under competition. The underlying mecha-

2http://jtys.chengdu.gov.cn/cdjt/c108497/2020-05/29/content_a019aa4bd8e848f89dbd30c246928186.

shtml, in Chinese.
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nism is simple: if an operator is committed to market dominance, other operators must respond
in kind. Otherwise, they would be driven out of the market. Our analysis will also show the
DLB market need not always fail. An effective policy instrument is fleet cap, which sets an upper
limit on each operator’s fleet size. If properly implemented, the policy can both prevent market
failure and improve social welfare.

The rest of the paper is organized as follows. Section 2 provides a brief review of related stud-
ies and summarizes their relationship with the present work. The oligopoly competition game is
introduced and analyzed in Section 3. Section 4 formulates the demand-supply equilibrium for
a DLB market with multiple operators and presents several analytical results. Section 5 presents
the numerical procedure to solve the GNE of the competition game. Section 6 describes a case
study based on a Chinese megacity with a well-developed DLB market. Section 7 reports the re-
sults from a set of hypothetical scenarios and discusses their implications. Section 8 summarizes
the main findings and comments on future research.

2 Related studies

The rapidly expanding literature on bike-sharing can be generally categorized into descriptive
and prescriptive studies. Descriptive research involves identifying patterns and deriving insights
from the operational data of established bike-sharing systems, with the primary goal of under-
standing and interpreting the behaviors of bike users. In contrast, prescriptive research mainly
addresses the strategies for designing and operating bike-sharing systems according to such
goals as efficiency, market share, and service levels. Our work falls into the second category. The
vast majority of the prescriptive studies cast the bike-sharing system as a network model, thereby
treating bike trips as flows in a network of bike stations. Importantly, bike flow is determined
not only by demand but also by spatiotemporal availability of bikes and vacant docks at stations.
The latter, in turn, is affected by a host of strategic, tactical, and operational decisions whose
optimization chiefly concerns these studies. Despite their popularity, network-based models are
complex and computationally demanding, making them unsuitable for our purpose, namely to
represent the competition between multiple operators and to analyze the impact of different
regulatory policies. There has been a growing interest recently in more aggregated models of
bike-sharing systems. Because these studies are more directly related to ours, they will be dis-
cussed in greater detail in the rest of this section. Those who wish to read a more comprehensive
review of bike-sharing may consult Laporte et al. (2018); Chen et al. (2020); Shui and Szeto (2020).

2.1 Monopolistic market

Chen et al. (2019) studied an idealized bike-sharing monopoly in which users can choose between
bike-sharing and a generic travel mode, and the operator aims to maximize profit by setting the
price and availability of bike-sharing (represented by α, or the probability of finding a functional
bike within a reasonable distance). The operator’s cost solely depends on availability — formu-
lated as a simple quadratic function of α — but can be reduced by a government subsidy. The
focus of the analysis is to examine how the availability function interacts with the subsidy policy.
They found subsidization is not effective for enhancing social welfare when the availability cost
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is high. Considering stochastic demand sequences over time, Freund et al. (2022) developed a
model to optimize the dock capacity of each bike-sharing station. The goal was to minimize the
occurrence of out-of-stock events when travelers attempt to rent or return a bike. They demon-
strated that the objective function in their model is multimodular and the design problem can be
solved effectively using a discrete gradient-descent algorithm. Using a structural demand model,
Kabra et al. (2020) estimated the elasticity of bike-sharing ridership to station accessibility and
availability of idle bikes. They also demonstrated how these estimates can be used to evaluate
different improvement strategies. In a sequel, He et al. (2021) extended the analysis by Kabra
et al. (2020) to examine the impact of network effects on bike-sharing demand and to evaluate
expansion strategies.

Soriguera and Jiménez-Meroño (2020) developed a continuous approximation model for the
design of a bike-sharing system. As in strategic transit design, the total cost, inclusive of both
the user cost and the operator cost, is minimized to determine design variables, which in the
case of bike-sharing include station density, fleet size, and rebalancing intensity. Their modeling
approach does not allow mode choice but can accommodate both docked and dockless systems,
as well as regular and electric bikes. Using the model, the authors demonstrated that bike-sharing
systems enjoy economies of scale. In a similar vein, Jara-Dı́az et al. (2022) studied the design of a
bike-sharing system, which is, in the basic form, configured over a grid network by station space,
the number of stations, the number of docks, and fleet size. The more advanced version of their
model allows for “waiting time” as a function of the average availability of bikes (at origin) and
docks (at destination), as well as rebalancing, which is linked to a reduction in the waiting time
and an increase in the operator’s cost as a result of moving bikes from oversaturated stations to
empty ones. They too observed economies of scale in the system, and argued that bike-sharing
should be subsidized — the larger the city, the greater the subsidy.

Zheng et al. (2023) assumed a bike-sharing service provided by a monopolistic operator com-
petes for customers with walking and a generic motorized mode. The model choice is largely
driven by trip length, but can also be influenced by the operator’s decision of fare and fleet size
— the latter dictates the access time, or the walking time taken to reach the nearest bike location.
The cost of rebalancing is simplified as the function of an exogenous variable, determined by
the empirically observed ratio between the number of bike trips and that of rebalancing trips.
Calibrated with empirical data collected in Chengdu, China, their model indicated the level of
service of bike-sharing has rapidly diminishing returns to the investment on the fleet. This leads
to the conclusion that the current fleet cap set by Chengdu is well above the optimal level. They
also found that, for a regulator seeking to influence bike-sharing operations for social good, the
choice of policy instruments depends on the operator’s objective.

2.2 Competitive market

Jiang et al. (2020) divided a service area into zones and an analysis horizon into multiple peri-
ods. Bike-sharing operation is then organized to serve endogenously given stochastic bike trips
connecting pairs of zones in each period. Travelers may choose from one of two competing oper-
ators but have no access to other modes (mode choice may be implicitly captured using a demand
function, as demonstrated in the paper). As an operator’s market share in a zone is determined
by its share of bike supply in that zone, the key decision is periodic rebalancing, which dictates
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how many bikes need to be moved between zones at the end of each period, after the initial
distribution of bikes in the network is altered by bike trips realized in the period. For either
operator, this decision problem is formulated as a multi-period two-stage stochastic program,
and the authors assume inter-operator competition would lead to a Nash equilibrium. Given the
complexity of the model, the operator’s problem was solved (to a local optima) using a sample
average approximation scheme, and the Nash equilibrium is taken as a stable point of a process
in which each operator’s problem is solved alternately. Fu et al. (2022) extended the model by
Jiang et al. (2020) to consider the situation where the competition is between an incumbent and
a newcomer. The authors argued that, because the newcomer cannot hope to reliably obtain in-
formation about the incumbent’s operations, it should expect the worst when making the market
entry decision. Based on this proposition, the authors developed a multi-stage max-min-max
robust maximization model to maximize the worst-case revenue achievable by the newcomer.
They also proposed a myopic method capable of bounding the potential optimal solution to the
problem. In another follow-up study, Jiang and Ouyang (2022) incorporated the operators’ dock
station location decision into the model as a first-stage decision, along with the fleet size and
service price, while rebalancing is considered as a second-stage decision. The duopoly is then
modeled as a generalized Nash equilibrium (GNE) problem, which is reformulated as a linear
model and solved by commercial solvers.

By inspecting the DLB trip data collected in 59 Chinese cities between 2015 and 2017 (i.e.,
the initial expanding phase of the industry), Cao et al. (2021) found that a monopolistic incum-
bent consistently benefits — in the form of greater ridership, high revenue per trip and a higher
utilization rate — when a competitor enters the same market. They explained this unexpected
finding by a positive network effect, which posits that a newcomer would attract enough new
users to benefit the incumbent, by widening the overall availability of bikes, thus the expected
probability of finding a bike. In the theoretical model, this positive effect is captured using a
Cobb–Douglas matching function that has increasing returns to scale large enough to generate a
dominant market-expanding effect. By assuming the investment cost as a convex function of the
fleet size, the model prevents the “winner-take-all” outcome. While it is speculated the convexity
of the function may be attributed to the “effort to balance and maintain a large and diverse net-
work of bikes”, the connection to the physical bike-sharing operation was not explicitly modeled.
Nor did the authors separate the rebalancing cost from the capital investment. Wang et al. (2023)
built a stylized Hotelling model of a DLB duopoly, in which travelers may subscribe to either
service (single-homing) or both (multi-homing), depending on their attributes (abstracted as the
location on the Hotelling line). The total demand is fixed and allocated to the three options based
on a utility that linearly increases with fleet size and decreases with price. On the supply side,
bikes are assumed to have a negative contribution to social welfare, which incentivizes the regu-
lator to limit the fleet size. The focus of the study is to examine three regulatory policies using
a game-theoretic approach: a deployment limit (i.e., capping the fleet size for both operators),
a multi-homing ban, or both. The results show that the deployment limit produces more social
benefits than the multi-homing ban.

6

Electronic copy available at: https://ssrn.com/abstract=4613247



2.3 Summary

In summary, of the handful of studies that have considered competition in bike-sharing, few have
focused on the industry’s vulnerability to intense, potentially destructive competition rooted in
its relatively low entry barrier. The empirical study of Cao et al. (2021) was enlightening, but it
was motivated by a positive effect of competition, which may well exist in the initial development
of the industry, but cannot adequately explain its crash. The discussion of regulations was
more scarce. The only exception to the best of our knowledge, Wang et al. (2023), justified
the interventions not by the need to curtail wasteful competition, but by an inherently negative
externality — captured by an abstract function — that bikes supposedly impose on society. In
addition, the underlying modeling approach adopted in these studies uses either a full-blown
network-based specification (e.g. Jiang et al., 2020) or a highly stylized construct (e.g. Cao et al.,
2021).

The present study strives to fill some of the gaps identified above. Our model, built on Zheng
et al. (2023), aims at a balanced approach to the trade-offs between tractability and realism,
and between empirical and theoretical investigations. The overarching goal is to explain how
unhealthy competition can harm bike-sharing and to search for regulations that can effectively
prevent these harms.

3 Game of oligopoly competition

Consider a city of an area A served by a set of I = {1, 2, . . . , I} DLB operators. The oligopoly
market is modeled as a dynamic game with a hierarchy. At the upper level, each operator i ∈ I

chooses an action si ∈ S = {S1, . . . , SK} characterized as optimizing a certain objective, such as
maximizing ridership or profit. Let Ti = {Ti1, . . . , TiK} be the set of objectives for operator i,
with Tik be the objective associated with action Sk. The payoff of the operator i is represented
as a vector-valued function ui : S|I| → R|S|. Specifically, for a given action profile s, where s =

{s1, . . . , si, . . . , sI}, the payoff vector for operator i is ti = [ti1, . . . , tiK] = ui(s). The payoff vector
ti is determined by the lower-level game, whose output is a subgame perfect Nash equilibrium
(Mas-Colell et al., 1995). Specifically, given its upper-level action si and those of its competitors,
which can be written collectively as s = (si, s−i) where s−i = {sj}, ∀j ∈ I\i, the operator chooses
tactics yi to maximize the objective associated with the action chosen at the upper level. The
tactics considered in this study include the fleet size (Bi) and fare rate measured by ¥ per unit
distance ( fi), i.e., yi = [Bi, fi]. All operators’ tactics are denoted as y = {yi}.

We write an oligopoly game of the DLB operators as M(I, S, Ti|i∈I, ui|i∈I). In what follows,
Section 3.1 defines the Nash equilibrium of the game. Section 3.2 formulates the lower-level game
that determines tactics yi and payoff vector ti, ∀i ∈ I for a given action profile s. Section 3.3 gives
an illustrative example.

3.1 Nash equilibrium of the dynamic game

To define equilibrium, we begin by establishing the preference of an operator for actions. This
is not trivial because, given the vector-valued payoff function, the operator essentially faces a
multi-objective optimization problem (Deb, 2013).
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Definition 1 (Weak preference). Given s−i, s = {si, s−i} and s′ = {s′i, s−i}, where si = Sk ̸= s′i.
Let ti = ui(s), t′i = ui(s

′). We say operator i weakly prefers action si to action s′i if tik ≥ t′ik, written as
si ⪰ s′i|s−i

.

Definition 2 (Strong preference). Given s−i, s = {si, s−i} and s′ = {s′i, s−i}, where si ̸= s′i. Let
ti = ui(s), t′i = ui(s

′). We say operator i strongly prefers action si to action s′i if tik ≥ t′ik, ∀k = 1, . . . , K
and at least one inequality holds strictly, written as si ≻ s′i|s−i

.

Definition 3 (Consistent action). If si ⪰ s′i|s−i
, ∀s′i ̸= si, we say si is a consistent action for operator i

given s−i.

The intuition behind consistency is that if an operator adopts a particular action, then it
should not be able to improve upon the payoff value tied to that action by committing to another
action. A consistent action may not exist and when it does, it may not be unique.

We next define the concept of dominant action.

Definition 4 (Dominant action). If si ≻ s′i|s−i
, ∀s′i ̸= si, we say si is a dominant action for operator i

given s−i.

When other operators’ actions are fixed, the existence of a dominant action means the oper-
ator is compelled to choose the action, because it would be worse off when switching to other
actions, as dictated by strong preference. The existence of a dominant action implies all other
actions are Pareto-dominated by that action, in the terminology of multi-objective optimization
(see e.g., Deb, 2013). Clearly, a dominant action may not exist either. However, when it does, it
must be unique. Moreover, the following property directly follows from the definition.

Property 1. If si is dominant for operator i given s−i, then si must also be consistent for operator i given
s−i.

We are now ready to define a Nash equilibrium under weak/strong preference.

Definition 5 (Nash equilibrium). Given an oligopoly game of the DLB operators M(I, S, Ti|i∈I, ui|i∈I),
an action profile s is a Nash equilibrium under weak preference (NEWP), respectively, Nash equilibrium
under strong preference (NESP), for the game if for ∀i ∈ I, si is a consistent, respectively, dominant,
action given s−i.

NEWP ensures that, given the actions of its competitors, an operator is content with its chosen
action, thus having no reason to switch to another action. However, the operator still retains the
flexibility to change actions, because other actions could be consistent as well. At NESP, the
operator no longer has this luxury because its current action dominates all other actions. In other
words, switching to any other actions will make the operator decisively worse off. This contrast
implies that NEWP is less stable than NESP, and if an NESP exists, the system is more likely to
settle on it than any NEWP state. The following is the direct result of Definition 5.

Property 2. An NESP is also an NEWP.

The oligopoly game and its Nash equilibrium provide a framework within which the DLB
market behavior is to be understood and explained. Note that the existence and uniqueness of
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Nash equilibrium depend on the payoff vectors emerged from the lower-level game, which itself
is built on complicated market dynamics. In Section 3.3 we provide hypothetical examples in
which NESP and NWEP co-exist, only one exists, or neither does. The case study (Section 7) will
reveal which outcomes are likely to emerge in the real world.

We set out to define the lower-level game next. The demand-supply equilibrium of the DLB
market, on which the entire game structure rests, will be discussed in Section 4.

3.2 Lower-level game

Given an action profile s, each operator makes its own tactics yi, while taking into consideration
the market’s demand-supply balance and the competitor’s tactics. We first formulate how each
operator optimizes the objective associated with its action. Before we start, it is worth emphasiz-
ing that tactics are chosen to satisfy such natural constraints as non-negativity and finite upper
bounds. The upper bound may be interpreted either as a very large number that ensures the
compactness of the feasible set or a limit set by government regulations. These considerations
give us the notion of proper decisions, defined below.

Definition 6 (Proper decision). A decision vector (yi) is said to be proper, written as yi ∈ Y0, if
fi ∈ [0, Γ f ], Bi ∈ [0, ΓB], where Γ f and ΓB are respectively a finite upper bound on the fare and fleet size.

Note that operator i’s payoff is jointly determined by all operators’ decisions. Thus, we write
the decisions of operator i’s opponents as y−i = [f−i,B−i], where f−i = [ f j] and B−i = [Bj], ∀j ∈
I\i. Given the upper-level action si = Sk, operator i’s decision problem in the lower-level game
is formulated as Problem (P1):

max
yi∈Y0

Tik (yi,y−i) |si=Sk (P1-a)

s.t. E (yi,y−i) = 0, (P1-b)

Di (yi,y−i) ≥ 0. (P1-c)

where Tik is the objective function for operator i corresponding to action Sk, (P1-b) represents
the demand-supply equilibrium condition that captures the dynamics of the DLB market, given
both s and y (see Section 4 for details), and (P1-c) captures the operational requirements which
operator i needs to follow, such as maintaining a minimum level of profit. For convenience and
to emphasize the feasible set of (P1) depends on y−i, we shall write it as Ωi(y−i) hereafter.

The lower-level game reaches a subgame perfect Nash equilibrium when the tactical decision
vector y∗ satisfies the following equilibrium conditions for a given action profile s

Tik
(
yi

∗,y∗
−i
)
≥ Tik

(
yi,y∗

−i
)

, si = Sk, ∀yi ∈ Ωi(y
∗
−i), ∀i ∈ I, (2)

where yi
∗ and y∗

−i are the decisions of operators i and −i at the equilibrium, respectively.
It is worth noting that Equation (2) characterizes a generalized Nash equilibrium (GNE) be-

cause both the operator’s objective function and the feasible set of its decisions are affected by its
competitors’ decisions. Although a GNE may not exist due to this complex interaction, Equation
(2) remains a necessary condition for equilibrium (Arrow and Debreu, 1954). We will devise a
numerical procedure to find the subgame perfect Nash equilibrium in Section 5, after we specify
the demand-supply equilibrium of the DLB market (Section 4).
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3.3 Illustrative example

We now illustrate the oligopoly game using a simple example. Consider a duopoly market with
two operators, denoted as I = {1, 2}. The action set S = {p, r}, where p represents profit
maximization and r represents ridership maximization. Accordingly, the set of objectives for
operator i ∈ I is Ti = {Tip, Tir}. Given an action profile s = [r, p], for example, the payoff of
operator i = 1, 2 can be written as [tip|s1=r,s2=p, tir|s1=r,s2=p], where tip|s1=r,s2=p and tir|s1=r,s2=p are
obtained when Operator 1 maximizes T1r and Operator 2 optimizes T2p, as defined by (P1).

Table 1 showcases the payoff matrix examples in which each cell is associated with an action
profile. Take Table 1a as an example, the action profile corresponding to the lower-right cell
(both operators choose r) is an NESP: the action r is a dominant action for both operators when
the competitor chooses r, since we have (i) given s2 = r, t1p|s1=r,s2=r = 1 > t1p|s1=p,s2=r = 0 and
t1r|s1=r,s2=r = 1 > t1r|s1=p,s2=r = 0; and (ii) given s1 = r, t2p|s1=r,s2=r = 1 > t2p|s1=r,s2=p = 0
and t2r|s1=r,s2=r = 1 > t2r|s1=r,s2=p = 0. However, r is no longer a dominant action when the
competitor is committed to p. Instead, both p and r are consistent actions for the operator.
This can be verified by noting that (i) given s2 = p, t1p|s1=p,s2=p = 1 > t1p|s1=r,s2=p = 0 and
t1r|s1=r,s2=p = 1 > t1r|s1=p,s2=p = 0; and (ii) given s1 = p, t2p|s1=p,s2=p = 1 > t2p|s1=p,s2=r = 0 and
t2r|s1=p,s2=r = 1 > t2r|s1=p,s2=p = 0. Since each action in the action profile {p, p} is consistent for
the operator, the market reaches NEWP in the upper-left cell.

Table 1: Payoff matrix examples in a duopoly. I = {1, 2}, S = {p, r}. In each cell, the first
row reports [t1p, t1r] and the second row report [t2p, t2r]. (a) NEWP (upper-left cell) and NESP
(lower-right cell) co-exist. (b) All action profiles are NEWP. (c) Neither NEWP nor NESP exists.

(a)

Operator 2
s2 = p s2 = r
[1, 0] [0, 0]

s1 = p
[1, 0] [0, 1]
[0, 1] [1, 1]

Operator 1
s1 = r

[0, 0] [1, 1]

(b)

Operator 2
s2 = p s2 = r
[1, 0] [1, 0]
[1, 0] [0, 1]
[0, 1] [0, 1]
[1, 0] [0, 1]

(c)

Operator 2
s2 = p s2 = r
[0, 1] [1, 1]
[0, 1] [1, 1]
[1, 1] [2, 0]
[1, 1] [2, 0]

We leave it to the reader to verify that all action profiles in Table 1b are NEWP but not NESP,
and no action profile in Table 1c is either NEWP or NESP.

4 Demand-supply equilibrium of a dockless bike-sharing market

In this section, we formulate the demand-supply interaction in a dockless bike-sharing (DLB)
market with multiple operators. Throughout this section, we shall assume all tactics, namely the
fleet size and fare of each operator, are fixed.

The bike-sharing market is situated in a city whose residents can either walk, bike, or drive,
as illustrated in Figure 1a. Note that “driving” may be viewed as a composite motor mode that
encompasses bus, taxi, or ride-hail. We follow Zheng et al. (2023) to assume
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Mode choice
(see Figure 1b)
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Figure 1: Illustration of a simplified mobility market. (a) bike-sharing market with I operators.
(b) Mode split by trip length.

Assumption 1. (i) Travelers’ origin and destination are uniformly distributed in space, and (ii) their
mode choice is primarily driven by trip length.

Assumption 1-(i) is introduced to avoid the complexities that inevitably come with spatial
heterogeneity but are unlikely to change the nature of the oligopoly game. The intuition behind
Assumption 1-(ii) is straightforward: biking is not preferred when the trip length is too short or
too long (see Figure 1b, a replica from Zheng et al., 2023). In the former case, the time savings
are too small to justify the cost, whereas in the latter the time savings are so great that a more
expensive but much faster mode (driving) would make more sense than biking. To simplify
mode choice, we further introduce the following assumption.

Assumption 2. The total number of travelers choosing biking in the city depends on the average cost of
biking.

Note that the average cost of biking, which consists of the average fare and access time (i.e.,
the time it takes to reach a bike), depends on the collective, rather than individual, tactics of
all operators in the DLB market. Assumption 2 is reasonable in our context for the following
reasons. First, different DLB services offer similar user experiences in terms of mobility, comfort,
and price. In a discrete choice modeling framework, similar alternatives like these are often
grouped together to form a nest in a decision tree, and the cost (or utility) of the nest depends
on certain collective measures of the costs of the alternatives included in the nest (Ben-Akiva
and Lerman, 1985).3 The idea is that the decision-maker would compare the nest with other
alternatives as if it represents a single alternative. Our approach here is in line with this practice,
albeit it simplifies the cost of the nest as a simple average. Second, the cost of switching between

3In the multinomial logit model, for example, the measure is a log sum term.
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DLB operators is relatively low. In China, using a DLB service does not require a long-term
subscription. Nor is it necessary to install a dedicated app on one’s smartphone. There are
a myriad of ways to gain access. Popular social media platforms such as WeChat and Alipay,
as well as map services such as Baidu and Gaode,4 often provide a seamless interface to bike-
sharing, including such crucial functions as bike search and payment. As early as 2017, Alipay
had already integrated six DLB operators that collectively provided six million bikes in 50 cities.5

Travelers relying on such an “integrator” can freely choose from a large number of operators,
and more often than not they pick whichever has bikes readily available nearby.

Assumption 2 regulates how the total number of bikers is determined. The allocation of bikers
among operators, i.e., each operator’s “market share”, depends on their fare and share of idle
bikes. In the following, we provide more details on the characterization of bike-sharing demand
(Section 4.1) and supply (Section 4.2). The reader is referred to Appendix A for a description of
main notations.

4.1 Demand

The bike-sharing demand is determined by the distribution of trip length — whose cumulative
distribution function (CDF) is denoted as G(·) — as well as the average fare rate, denoted as f
in ¥ per unit distance, and the average access time, denoted as a. Recall that biking is the most
competitive mode for trips of medium length, since, intuitively, a traveler would walk when the
trip is very short and drive when it is very long. This observation suggests that there is a length
range within which all trips will be made by biking. Following Zheng et al. (2023), it is easy to
show that the lower and upper bounds of the range, denoted as l and l̄ respectively, are given by

l =
µa

µ/vw − f − µ/vb
and l̄ =

τ − µa
f + µ/vb − fd − µ/vd

, (3)

where µ is the value of time; fd is the monetary cost of driving per unit distance; τ is the part of
the driving cost not directly proportional to the travel distance, such as acquisition and mainte-
nance, and vw, vb, and vd are operating speed for walking, biking, and driving, respectively; see
Zheng et al. (2023) for details. Thus, the total demand for bike-sharing is given by

Q = Q̄
(
G(l̄)− G(l)

)
, (4)

where Q̄ is the total travel demand. Since the focus of this study is the DLB market, we assume
the values of a and f guarantee l̄ > l, which ensures Q > 0.

We next discuss how the total biking demand Q is allocated to each operator. Let Qi be the
market share of operator i ∈ I, and define

mi = Qi/Q (5)

as the operator’s market proportion. This definition allows us to estimate the fare f as a ridership-
weighted average, i.e.,

4https://www.woshipm.com/evaluating/790056.html, in Chinese
5https://www.sohu.com/a/137167007_117869, in Chinese.
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f = ∑
i∈I

mi fi. (6)

We shall discuss the estimation of access time a in Section 4.2 since it is a supply feature.
We assume operator i’s market share, Qi, depends on its share in the supply of idle bikes, as

well as the relative difference between its fare and the fares set by the competitors. Intuitively, the
larger the share of idle bikes, the lower the fare relative to those of the competitors, the greater
the market share. We propose to quantify this relationship using the following function:

Qi =
ni

∑j∈I nj
Q − ∑

j∈−i
kij( fi − f j), (7)

where ni is the number of idle bikes owned by operator i and kij measures the sensitivity of
Qi to the fare difference between operator i and j (note that, by definition, kij = k ji). The first
term in Equation (7) allocates the total biking demand to operator i in proportion to the size
of its idle bikes, while the second term adjusts the base allocation based on fare differences.
Equation (7) implies that, everything else equal, operator i can always influence its market share
through pricing. On the other hand, controlling ni is less straightforward because, as we shall
see in the next section, it is related to fleet size, bike demand, and rebalancing activity, through a
complicated conservation condition.

Linear demand models similar to (7) have been widely used to capture price elasticity under
competition in transportation systems (see e.g., Charnes et al., 1972; Kurata et al., 2007; Zhou and
Lee, 2009; Ülkü and Bookbinder, 2012; Zheng et al., 2017; Choi et al., 2020; Li et al., 2022), largely
due to the tractability they afford to the analysis. It is easy to verify that the demands assigned to
the operators by (7) add up to the total demand, i.e., ∑i∈I Qi = Q. In theory, the demand model
(7) could produce unrealistic market shares. For example, if an operator that owns a very small
fleet (Bi → 0) sets a very high fare, it may end up with a “negative” demand. On the flip side,
if it sets the fare close to zero, it may generate a demand larger than what its tiny fleet could
plausibly serve. These corner cases are unlikely to rise in a world of rational operators, and when
they do occur, they indicate the operator in question should be excluded from the market since
it would not make a meaningful contribution to the supply. We will discuss how to prevent the
interference of these corner cases later.

4.2 Supply

Each operator independently determines its fare fi and fleet size Bi. For an operating hour, the
total bike time must be conserved for each operator, namely,

Bi = ni + Ui + Ri, ∀i ∈ I, (8)

where ni is the idle bike time, Ui is the total bike usage time, and Ri is the total bike rebalancing
time.

The average access time a depends on the average distance of a random traveler to the nearest
idle bike, which in turn depends on the average density spatial distribution of these bikes. Note
that, while idle bikes tend to scatter across the city, they naturally form clusters due to the
limited suitable bike parking areas. In other words, it is the density and distribution of these
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bike clusters, rather than those of the bikes themselves, that play a pivotal role in determining
the access time. We call the centroid of a bike cluster a unique bike location, and the distance to
any bike included in the cluster is represented by the distance to the centroid. We further make
the following assumption about unique bike locations.

Assumption 3 (Unique bike location). Unique bike locations (i.e., the locations of bike clusters) dis-
tribute uniformly in space, and their density is a function of the density of idle bikes, i.e.,

ñ
A

= z(
n
A
), (9)

where ñ is the number of unique bikes locations and n = ∑i∈I ni is the total number of idle bikes.

Zheng et al. (2023) calibrated the function z(·) by clustering GPS locations of idle bikes from a
large data set collected in Chengdu. Their results suggested that z(·) is an increasing and concave
function.

With Assumption 3, we are ready to derive the average access time based on the average
distance between a random point and the nearest unique bike location (see e.g., Daganzo, 1978):

a =
δ

vw

√
A
ñ

, (10)

where vw is the average walking speed and δ is a parameter related to the geometry of the city.
The bike usage time Ui and rebalancing time Ri can be obtained as

Ui =
Qi

Q
Q̄
∫ l̄

l
xdG(x), (11)

Ri =
Li

vr
αQi, (12)

where Li is the average traveling distance per rebalancing trip, vr is a nominal rebalancing speed
that converts the distance to equivalent bike time, and α is the average number of rebalancing
trips needed for each “real” bike trip. Note that α can be interpreted as the rebalancing efficiency:
the larger the value of α, the lower the efficiency. We treat α and vr as exogenous parameters and
Li as an endogenous variable. Specifically, α is directly observed from empirical DLB operational
data and vr is estimated based on demand-supply equilibrium, see Zheng et al. (2023) for details.

To estimate the average rebalancing distance Li, we assume each operator aims to maintain
a steady spatial distribution of idle bikes by routinely moving a certain number of idle bikes
to unique bike locations that require “replenishment”. Since α can be observed from data, the
number of idle bikes to be rebalanced per hour is simply αQi. By assuming the ratio between αQi

and the number of unique bike locations in need of replenishment equals the average number of
idle bikes in each location, i.e., ni/ñi, Zheng et al. (2023) estimated

Li = δ

√
ni

ñi

A
αQi

, (13)

which is the average distance between a random idle bike and the nearest unique bike location
in need of replenishment. For a detailed justification, the reader is referred to Zheng et al. (2023).
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Finally, to rule out unrealistic equilibrium states, we impose the following constraint on the
number of idle bikes

0 ≤ ni ≤ Bi, ∀i ∈ I. (14)

While the lower bound is a natural restriction, it also ensures an operator’s bike usage time never
exceeds its fleet size — as discussed earlier, such a corner case could arise from the demand
model (7). On the other hand, the upper bound implies no negative Qi would be allowed as per
Equation (8).

4.3 Equilibrium

Combining (3 - 14) fully specifies the demand-supply interaction in a DLB oligopoly with fixed
tactics. For simplicity, we write this equation system as E (y) = 0, which is also the “equilibrium
constraint” in (P1), i.e., the operator’s decision problem in the lower-level game. We proceed
to show that the system should always have a solution. Let us first define the solution as x =

[n1, . . . , nI , f ] and x ∈ X, where X is a feasible set. We choose to represent the system solution
using these variables because, as we shall show, they cannot be explicitly represented while all
other variables can. Thus, by viewing E (y) = 0 as a self-mapping from X to itself, we can invoke
Brouwer’s fixed point theorem (Brouwer, 1911) to prove solution existence.

Proposition 1. If y is a proper decision, there always exists an x ∈ X such that E (y) = 0.

Proof. Brouwer’s fixed point theorem dictates that E (y) = 0 has at least one solution x ∈ X if
(i) it can be cast as a continuous mapping from X to itself, and (ii) X is nonempty and compact.

We first prove (i), which is equivalent to showing any variables in the system other than those
included in x can be represented as a continuous function of x. Per Equation (10), the access time
a depends on ñ, which in turn depends on ni, ∀i. Hence, a is a continuous function of x. Since l
and l̄ are determined by a and f , they too are continuous functions of x. From Equations (4) and
(7), we can see Qi and Q are continuous functions of x as well, and Equation (13) suggests Li is
too. Moreover, we may rewrite Equation (8) as follows:

ni = Bi − Ui − Ri, ∀i ∈ I. (15)

It is easy to verify all variables in the RHS are continuous functions of x. However, since ni is
part of x, the above relationship is implicit. Finally, the average fare f is determined by Qi, ∀i ∈ I

through Equation (7), and hence a continuous function of x. Again, this relationship is implicit.
To prove (ii), first note that f is bounded because it lies in the simplex of fi, ∀i ∈ I and all fi

are bounded since y is proper. In addition, ni is bounded as per Constraint (14). Therefore, X is
closed and bounded, which means it is compact. We next prove X must be nonempty. The only
situation that X becomes empty is when no solution can satisfy Constraint (14). We prove this is
impossible through construction. Suppose a solution x violates Constraint (14) because ∃j such
that nj < 0 or nj > Bj. If nj < 0, it implies that the fleet size is too small to sustain a meaningful
service. If nj > Bj, it follows that Qi < 0, suggesting the operator’s market share is negligible
because of its tactics. Either way, the operator j should be eliminated from the market, i.e., Qi = 0.
It is easy to see we can continue the process until the market with remaining operators reaches
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a feasible equilibrium. This process must stop with a solution because when there is only one
operator left, the solution always exists (Zheng et al., 2023). This completes the proof.

We close by defining each operator’s profit and the social welfare attributed to the DLB
service at the demand-supply equilibrium given y. Operator i’s profit equals its revenue less the
operating cost, i.e.,

Πi = fi
Qi

Q

(
Q̄
∫ l̄

l
xdG(x)

)
− β0Bi − β1αLiQi, (16)

where the first term is operator i’s revenue, β0 denotes the acquisition cost per bike operation
hour and β1 denotes the rebalancing cost per bike per unit distance. Social welfare can be
calculated as the travel cost saved by making bike-sharing available as a new transportation
mode, namely,

W =C0 −
(

β0 ∑
j∈I

Bj + β1α ∑
j∈I

LjQj

)
−
(

µ

vw

∫ l

0
xdG(x)

)
Q̄

−
(

µa
(
G(l̄)− G(l)

)
+

µ

vb

∫ l̄

l
xdG(x)

)
Q̄

−
((

µ

vd
+ d
) ∫ +∞

l̄
xdG(x) + τ(1 − G(l̄))

)
Q̄,

(17)

where C0 denotes the social cost without the DLB system.

4.4 Analysis

In this section, we present a few analytical results concerning the properties of the demand-
supply equilibrium formulated above. To facilitate the analysis, let us first define ηn and η f as
the elasticity of total bike-sharing demand with respect to, respectively, the total number of idle
bikes (n) and the average fare of DLB service ( f ), namely,

ηn =
∂Q/Q
∂n/n

, η f =
∂Q/Q
∂ f / f

. (18)

Proposition 2. Consider a DLB duopoly, i.e., I = {1, 2}. Assume f1 ≤ f2 and denote the difference
d f = f2 − f1. Suppose the operators maintain a steady level of service, which means they keep their idle
bike time constant.

• When f1 decreases, the ridership of Operator 1 always increases, and that of Operator 2 increases if

d f > d1 ≡ − [Q1n2+(n1+n2)k12 f /η f ]Q
(n1+n2)k12Q2

.

• When f2 decreases, the ridership of Operator 2 increases if d f < d2 ≡ [Q2n2−(n1+n2)k12 f /η f ]Q
(n1+n2)k12Q2

and

that of Operator 1 increases if d f < d3 ≡ [Q2n1+(n1+n2)k12 f /η f ]Q
(n1+n2)k12Q1

where d2 > d3.

Proof. See Appendix B for details.

The above result illustrates the relationship between an operator’s ridership and the fares of
both itself and its competitor. When an operator cuts the price, it has two opposing effects. On the
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one hand, the lower price attracts more travelers to the DLB service, which helps its competitor
gain ridership. On the other hand, the operator can also increase its market proportion with the
lowered fare, thereby taking travelers away from its competitor. Proposition 2 shows that, under
certain conditions, the first effect above dominates and an operator may enjoy a “free-ride” —
that is, it achieves a higher ridership when the competitor lowers the price. Moreover, when
the operator charging a lower fare further reduces the price, it is guaranteed to gain ridership.
However, when the operator that initially charges a higher price attempts to grab ridership by
lowering the price, it has to substantially decrease the price difference for the strategy to work.

The impact of fleet size on ridership can be analyzed similarly. However, the analysis is quite
complicated because the average DLB fare depends on the market share of each operator, which
in turn is a function of their respective fleet sizes. For tractability, we only consider the case
where all operators charge the same fare.

Proposition 3. Consider a DLB market with I > 1 operators. Let n∗
i be the number of idle bikes owned

by operator i at a market equilibrium (i.e., a solution to the system (3) - (14) defined by a proper decision
vector) and suppose all other operators maintain a steady level of service (constant idle bike time). If the
fare fi is the same for each i ∈ I and ηn < 1, n∗

i is a strictly increasing function of its own fleet size Bi,
i.e., ∂n∗

i
∂Bi

> 0.

Proof. See Appendix C for details.

The above result seems intuitive: ceteris paribus, an operator may increase its holding of idle
bikes, hence improving overall accessibility to bike-sharing, by acquiring a larger fleet. Zheng
et al. (2023) gave a similar result for a market with a monopolizing DLB operator. The difference
is that, in the case of monopoly, the result holds regardless of the value of the demand elasticity
with respect to the fleet of idle bikes (ηn). Proposition 3 highlights under what condition the
same result continues to hold in the oligopoly case. When ηn is too large (≥ 1), an operator
unilaterally increasing its fleet size may induce a significant demand surge, of which it absorbs
a disproportionately large share. The extra demand could end up reducing the number of idle
bikes. We expect, however, the magnitude of ηn to be well below one in practice, i.e., the increase
in the total DLB demand caused by one percent increase in n is much less than one percent.

Proposition 4. Consider a DLB market with I > 1 operators. If ηn < 1 and all other operators maintain
a steady level of service (constant idle bike volume), then an operator’s ridership always increases with its
own fleet size and decreases with its competitor’s fleet size.

Proof. Since the competitors maintain constant idle bike fleets, we can write the derivative of
operator i’s demand Qi with respect to its own fleet size Bi as

∂Qi

∂Bi
=

 ∑j∈−i nj(
∑j∈I nj

)2 Q +
ni

∑j∈I nj

∂Q
∂ni

 ∂ni

∂Bi
. (19)

Note that ηn < 1 implies Proposition 3 holds. Hence, we have ∂ni
∂Bi

> 0. Since ∂Q
∂ni

> 0 always holds
by definition, the RHS of Equation (19) is positive, which indicates Qi strictly increases with Bi.

17

Electronic copy available at: https://ssrn.com/abstract=4613247



Holding all but operator j’s idle bike fleet constant we can similarly derive ∂Qi/∂Bj, ∀j ∈ −i
as

∂Qi

∂Bj
=

 niQ(
∑j∈I nj

)4 (ηn − 1)

 ∂nj

∂Bj
, ∀j ∈ −i. (20)

Again, by invoking Proposition 3, we can show that the RHS of Equation (20) is negative. There-
fore, operator i loses market share when any of its competitors add more bikes to the market.

Proposition 4 confirms the intuition that, in a DLB market with competition, an operator can
always attract more travelers and diminish the market share of its competitors by putting more
bikes on streets.

5 Solution algorithm for the lower-level game

In this section, we show how the sub-game perfect Nash equilibrium of the lower-level game,
defined in Section 3.2, may be found using a numerical procedure. We first re-write the operator
i’s decision problem (P1) by replacing the equilibrium condition with Equations (3) - (14), i.e.,

max
yi∈Y0

Tik (yi,y−i)

s.t. (3) − (14),

Di (yi,y−i) ≥ 0.

(P2)

The Lagrangian dual problem of (P2) is defined as follows:

min
λi

θ(λi) = sup
yi

Li(λi,yi)

s.t. λi ≥ 0,

(3) − (14).

(P3)

where λi = [λ1
i , λ2

i , λ3
i ] is Lagrange multiplier and Li(λi,yi) = Tik (yi,y−i) + λ1

i Di (yi,y−i) +

λ2
i
(
Γ f − fi

)
+ λ3

i (ΓB − Bi). For a given λi and ignoring corner solutions at [0, 0],6 the first-order
condition of supyi

Li(λi,yi) implies that operator i’s optimal strategy yi
∗ should satisfy:

∂Li(λi,yi
∗)

∂yi
∗ = 0. (21)

By definition we have θ(λi) = Li(λi,yi
∗). Taking partial derivative with respect to λi on both

sides yields ∂θ(λi)
∂λi

= ∂Li(λi ,yi
∗)

∂λi
+ ∂Li(λi ,yi

∗)
∂yi

∗
∂yi

∗

∂λi
= ∂Li(λi ,yi

∗)
∂λi

. From the KKT conditions of (P3), we
have the following:

λz
i

∂Li(λi,yi
∗)

∂λz
i

= 0, ∀z ∈ {1, 2, 3}, (22)

λz
i ≥ 0,

∂Li(λi,yi
∗)

∂λz
i

≥ 0, ∀z ∈ {1, 2, 3}. (23)

6Setting either the price or the fleet size to zero is evidently a sub-optimal decision.
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Algorithm 1 Bi-level Dual Gradient Descent (BDGD)

1: Inputs: Action si and objective Tik, ∀i ∈ I, step sizes ρy, ρλ, and convergence criterion ϵ.
2: Initialize λ = [λi] = [λ1

i , λ2
i , λ3

i ], ∀i ∈ I

3: Set gλ = ∞
4: while gλ ≥ ϵ do
5: Set gy = ∞
6: Initialize tactics as y = [yi, ∀i ∈ I], where yi = ỹ, ∀i ∈ I.
7: while gy ≥ ϵ do
8: Find demand-supply equilibrium using Algorithm 2
9: Calculate ∇y = [ ∂Li(λi ,yi)

∂yi
] using the procedure described in Appendix D

10: Set gy = ∥∇y∥∞

11: Set y = [y + ρy · ∇y]+
12: end while
13: Calculate ∇λ = [ ∂Li(λi ,yi)

∂λi
]

14: Set gλ = λ× [∇λ]
T
+

15: Set λ = [λ+ ρλ · ∇λ]+
16: end while
17: Output: Optimal decision vector y.

Equations (21) - (23) are the market equilibrium conditions for any operator i ∈ I when they
maximize Tik subject to a generalized constraint denoted as Di (yi,y−i) ≥ 0.

We propose to solve Equations (21) - (23) using a Bi-level Dual Gradient Descent (BDGD)
algorithm (see Algorithm 1). The algorithm consists of two main loops. In the inner loop, the
Lagrangian multiplier vector λ = [λi] is fixed as constant, and the oligopoly equilibrium, i.e.,
the optimal decision vector y = [yi], is obtained by a gradient decent method based on auto-
matic differentiation (Baydin et al., 2018).7 After getting the optimal decision vector y, the outer
loop updates λ by adding the gradient of each operator’s Lagrangian function Li(λi,yi) with
respect to λi. By definition, the value of that gradient can be easily obtained by calculating
[Di (yi,y−i) , Γ f − fi, ΓB − Bi]. When λ converges, the algorithm is terminated, and the optimal y
from the last inner loop is retained as the optimal solution. It is worth emphasizing in the algo-
rithm all operators simultaneously update their decisions in each loop and when it is terminated,
the equilibrium solution is found for all operators in the market.

The algorithm presented herein is designed to find a stationary point that may not be unique.
Strictly speaking, a physically meaningful stationary point may not even exist. In our numerical
experiments, we try to detect multiple equilibria by starting from different initial points, but have
yet to find a single multi-equilibria instance in the case study constructed from real data. We next
describe the case study.

7The detailed procedure is included in Appendix D.

19

Electronic copy available at: https://ssrn.com/abstract=4613247



Algorithm 2 Demand-supply equilibration given tactic decisions

1: Inputs: Bi, fi, ∀i, step size ρ, convergence criterion ϵ, Cont = True

2: while Cont do
3: Initialize V = [n1, . . . , nI , f ] with 0 ≤ ni ≤ Bi, ∀i ∈ I and mini∈I fi ≤ f ≤ maxi∈I fi

4: Set the gap g = ∞
5: while g ≥ ϵ do
6: Calculate a, l, l̄, Q, using Equations (10), (3), and (4)
7: Calculate Qi, ∀i ∈ I using Equation (7)
8: Calculate the number of idle bikes ni

′, ∀i ∈ I using Equation (8)
9: Calculate the average trip fare f ′ using Equation (6)

10: Set the new market equilibrium vector V ′ = [n1
′, . . . , nI

′, f ′]
11: Set g = |V ′ − V |
12: Update V by V = V + ρ · (V ′ − V )

13: end while
14: if ∃nj > Bj, nj ∈ V then
15: Update I = I\j
16: else if ∃nj < 0, nj ∈ V then
17: Update I = I\j
18: else
19: Cont = False

20: end if
21: end while
22: Output: V and I at equilibrium.
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Figure 2: Chengdu’s city center (colored area) considered for the case study.

6 Case study

In this section, a case study is constructed to operationalize the model and to examine the likely
outcome of the DLB oligopoly under various hypothetical conditions that resemble those found
in a Chinese megacity with a well-developed DLB market. Below, we first describe the data set,
before specifying the DLB oligopoly game built from it.

6.1 Data

We employ a set of DLB trip records collected by a large DLB operator in Chengdu, China over a
period of 43 days, from March 25, 2020, to May 6, 2020. The data were concentrated in the center
of the city (see the colored area in Figure 2). Each trip record contains a trip ID, a bike ID, a
user ID, start/end timestamps, start/end GPS coordinates, and a trip distance. In total, there are
15,349,358 recorded trips, associated with 249,377 unique bike IDs. On average, a bike is utilized
1.43 times per day during this period. Considering that almost 97% of bike rides took place
between 7:00 AM and 11:00 PM, we utilized all trips occurring within this window to establish
the analysis hour in our model — that is, all analyses are performed for an “average hour” in
that period.

With a land area of 525 square kilometers (km2), the study area is inhabited by a population
of 4.23 million. In September 2018, the total number of shared bikes within this area had reached
1.1 million. However, in May 2019, a strict limit was imposed, capping the DLB bike fleet at
600,000. About a year later, shortly after the data used in this study were collected, the cap was
further reduced to 450,000 bikes. Therefore, we assume that during the data collection period,
there were around 600,000 bikes in the city owned by multiple operators. Accordingly, the data
set we have, consisting of approximately a quarter million bikes, accounts for slightly over 40%
of the market share. The average number of trips made by these bikes is 20,709 per hour in
the analysis period. Assuming the ridership of each operator is proportional to its fleet size, we
estimate the total DLB ridership at 49,922 trips/hr for a fleet of 600,000.

Most input variables can be directly observed or estimated from publicly available sources.
The notable exceptions are the unique bike location function z(·), the fixed driving cost, the total
travel demand, and the rebalancing speed. Zheng et al. (2023) estimated z(·) by clustering idle
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Table 2: Default values of key input parameters in the case study

Parameter Unit Value
Biking speed vb km/hr 7.21
Study area A km2 525
Rebalancing frequency α 0.2
Value of time µ ¥/hr 30
Walking speed vw km/hr 4
Driving speed vd km/hr 25
Variable driving cost fd ¥/km 1
Access factor δ 0.65
Bike acquisition cost β0 ¥/hr 0.057
Unit bike rebalancing cost β1 ¥/km 1
Bike fare (status quo) f1, f2 ¥/km 0.416
Fixed driving cost τ ¥ 6.49
Total demand rate Q̄ trips/hr 162,000
Rebalancing speed vr km/h 2
Competition factor kij, ∀i, j ∈ {I} trips/¥ 23,200
Unique location function z(·) ñ

A = 4.15
( n

A

)0.26

bike location data. The other three parameters were calibrated by matching a demand-supply
equilibrium to real observations, see Zheng et al. (2023) for details. The default values of all input
parameters are reported in Table 2.

The present study does have a unique parameter—the competition factor kij—that needs to
be estimated. Recall that kij captures the amount of ridership shifted between operators i and j
when the difference in their fares changes. To reduce the burden of estimation, we assume the
competition factor is constant among all pairs of operators. To give a first-order estimation, we
use the change rate in the total DLB ridership with respect to the average fare in the base model
as a surrogate. The analysis suggests that, when all parameters are fixed at their current level
(i.e., the status quo), the DLB ridership decreases by 232 when the fare increases by ¥0.01/km.
This is translated to a value of kij at 23,200. We shall also test the model’s sensitivity to kij in
Section 7.5.

6.2 Game settings

We set the action set S = {p, r}, where p denotes the action of profit maximization and r denotes
that of ridership maximization. We choose these two actions because they are the most obvious
options. An operator may prioritize ridership to grow market share, a common strategy during
the early phase, when it strives to build a strong user base or drive out competition. In a mature
market, where most operators have a relatively stable market share, profit maximization seems a
more rational action.

For an operator i taking action p, the objective function for its decision problem is Tip (yi,y−i) =

Πi (yi,y−i), as defined in Equation (16). For profit maximization, Constraint (P1-c) is not needed.
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If the operator chooses r, we assume that it would be constrained by a profit target Π̄i. This is rea-
sonable because, given an unlimited amount of money, one can always monopolize a market by
flooding it with an infinite number of bikes. In this case, the operator’s decision problem has an
objective function Tir (yi,y−i) = Qi (yi,y−i) and Constraint (P1-c) that reads Πi (yi,y−i)− Π̄i ≥ 0.

In most hypotheticals, we consider a duopoly game (i.e., I = {1, 2}) to avoid unnecessary
complications. A sensitivity analysis will be performed to examine how the number of operators
affects the outcome of the game. In our hypothetical duopoly, operator 1 is the real operator
whose data are used to build the case study (i.e., its supply of bikes amounts to about 40% of the
total supply in the market), and Operator 2 is a virtual operator that supplies 60% of bikes, by
lumping together all other DLB operations in the city.

7 Numerical experiments

We begin by examining various subgame perfect Nash equilibria, each corresponding to a specific
action profile. The results are compared with a DLB monopoly to gain insights on the impact
of competition. Section 7.2 analyzes the likely outcomes of a duopoly competition game, and
Section 7.3 explores how various regulatory policies may influence them. Section 7.4 extends the
analysis to the asymmetric case in which operators are heterogeneous. The results of sensitivity
analyses are reported in Section 7.5.

7.1 Subgame perfect Nash equilibrium

In this section, we focus on the results of the lower-level game and assume the operators in the
duopoly always take the same action. Two scenarios are considered: profit maximization (DU-p
in short) and ridership maximization without running a deficit (DU-r in short). The subgame
perfect equilibria are compared with the status quo (i.e., as observed in the real data), defined
by the following tactic decisions for the two operators: f1 = f2 = ¥0.416/km, B1 = 248, 894,
B2 = 351, 106.

Table 3 compares the system performances in the three scenarios. The performance is mea-
sured by the overall DLB market metrics (e.g., social welfare, access time, total ridership) and
each operator’s metrics (e.g., tactic decisions, market share, cost, and profit). In the former cate-
gory, social welfare is the total travel cost savings as defined in Equation (17). An operator’s profit
is its revenue less acquisition and rebalancing costs; the percentage in the parentheses in the last
four rows of the table are relative to the operator’s revenue. In DU-p and DU-r, the operators
have the same performance because by default they are identical (in terms of both characteris-
tics and action). To provide another benchmark, we also include in this section the results of a
monopoly, taken directly from Zheng et al. (2023), see Table 4. This gives us two more scenarios:
a profit-maximizing monopoly (MO-p in short) and a ridership-maximizing monopoly (MO-r in
short). A quick inspection of Table 3 and Table 4 reveals that the duopoly scenarios resemble the
status quo much better than the monopoly scenarios in nearly all metrics (especially price, fleet
size, and utilization ratio). More details to follow on this difference.

In the status quo, the operator with a smaller market share suffers a higher rebalancing cost
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Table 3: DLB system performances: duopoly vs. the status quo.

Scenarios: the status quo DU-p DU-r9

Access time (min) 1.92 2.16 2.06
Total ridership (trips/hr) 49,956 40,548 46,672
Average trip distance (km) 1.26 1.17 1.23
Social welfare (¥/hr) 46,930 56,180 57,122
operator: Operator 1 Operator 2 Operator 1/2 Operator 1/2
Price (¥/km) 0.416 0.416 0.743 0.503
#bike 248,894 351,106 126,786 178,769
Utilization ratio 1.46% 1.46% 2.59% 2.23%
Ridership (trips/hr) 20,718 29,238 20,274 23,336
Market share 41.5% 58.5% 50% 50%
Profit (¥/hr) -7,876 (-73%) -10,826 (-71%) 6,850 (39%) 0 (0%)
Acquisition cost (¥/hr) 14,187 (131%) 20,013 (131%) 7,227 (41%) 10,190 (70%)
Rebalancing cost (¥/hr) 4,559 (42%) 6,152 (39%) 3,492 (20%) 4,264 (30%)
Revenue 10 (¥/hr) 10,869 (100%) 15,339 (100%) 17,569 (100%) 14,454 (100%)

for each bike kilometer traveled (¥0.175 for Operator 1 vs. ¥0.167 for Operator 2).8 This means
a DLB operator could reduce its rebalancing cost by serving a larger market share. In DU-p,
where both operators aim to maximize profit, the price is 80% higher than the status quo. This
rate of increase, however, is much smaller than what is observed in a monopoly (300% in MO-p).
Similarly, there is a milder change in the total fleet size, as well as in the ridership, in a duopoly
than in a monopoly. The fleet size drops by 58% in DU-p compared to the status quo, whereas a
90% reduction occurs in MO-p. Also, the total ridership drops 19% and 48% in DU-p and MO-p,
respectively. Clearly, the competition means neither operator has as much power as a monopoly
to swing the market with tactic decisions. As a result, they must settle for less aggressive tactics
that seem to better reflect the reality (the status quo).

A closer look at the differences between DU-p and MO-p reveals the inefficiencies resulted
from the competition, including a lower utilization ratio and reduced profits for both operators
(indeed, the total profit earned by both operators in the duopoly still falls far behind the mo-
nopolistic profit). Yet, social welfare is improved in the duopoly compared to the status quo,
even if both operators aim to maximize profit. In contrast, allowing a monopoly in the market
hurts social welfare. We shall return to the impact of competition on social welfare in Section 7.5,
where more than two operators are allowed in the market.

We next turn to another action: ridership maximization without deficit. In DU-r, the fare rises
but the fleet size decreases compared to the status quo. The operators in the duopoly collectively
maintain a much larger fleet than does the operator in MO-r, thanks to the competitive pressure.
The extra burden explains why they must charge a considerably higher price (¥0.503/km vs.

8At ¥0.17/km, the rebalancing cost is about ¥0.3/bike per day, very close to the estimation reported in https:

//m.36kr.com/p/2150789257283847, in Chinese.
9Operator 1 and 2 are identical in Scenario DU-p (DU-r).

10Revenue equals the sum of profit, acquisition cost, and rebalancing cost.
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Table 4: DLB system performance in a monopolistic market. (Results from Zheng et al. (2023))

Scenarios MO-p MO-r

Price (¥/km) 1.222 0.161
#bike 56,962 108,427

Access time (min) 2.64 2.43
Average trip distance (km) 1.11 1.36
Utilization ratio 7.01% 8.97%
Ridership (trips/hr) 25,988 51,532

Social welfare (¥/hr) 45,461 69,672
Profit (¥/hr) 29,020 (83%) 0 (0%)
Acquisition cost (¥/hr) 3,246 (9%) 6,180 (55%)
Rebalancing cost (¥/hr) 2,876 (8%) 5,102 (45%)
Revenue (¥/hr) 35,144 (100%) 11,282 (100%)

¥0.161/km) to avoid running a deficit. Taken together, the duopoly generates a total ridership
of around 46,700 trips/hr, about 10% lower than the monopolistic market and 7% lower than the
status quo. Furthermore, social welfare in DU-r is 18% lower than that achieved by the “benign”
monopoly that strives to maximize DLB ridership. Although DU-r performs better than DU-p
in most system performance metrics (e.g., ridership and social welfare), it is less efficient, as
measured by utilization ratio and profit. Moreover, the relative differences made by the actions
are much smaller with competition than those without.

7.2 Outcomes of a DLB duopoly competition

We next turn to the dynamic game where the operators may choose either action at the upper
level. We solve the subgame perfect Nash equilibria in four scenarios (each defined by an action
profile with a different combination of actions) and obtain the payoffs of each operator in each
scenario. For example, in Table 5, the upper-right cell reports the payoff vectors (profit and
ridership) of both operators and social welfare when Operator 1 maximizes profit and Operator
2 chooses ridership maximization without deficit.

If Operator 1 chooses to maximize ridership, Operator 2 will be worse off in terms of both
profit and ridership if it wishes to maximize profit. Specifically, Operator 2 will break even
and retain a ridership of 23,336 trips/hr (a market share of 50%) by maximizing ridership. If,
instead, Operator 2 switches to profit maximization, it will run a deficit of ¥-117/hr and has a
considerably smaller market share (less than half of what can be achieved had it stuck to ridership
maximization). Thus, ridership maximization is a dominant action for Operator 2 in this case.

If Operator 1’s action is to maximize profit, both profit and ridership maximization are con-
sistent actions for Operator 2. If the action is to maximize profit, it will find maximizing profit
indeed is better than maximizing ridership — the former gives a profit of ¥6,850/hr and the lat-
ter ¥0/hr. If the action is to maximize ridership, then maximizing ridership leads to a ridership
of 39,387 trips/hr, much higher than 20,274 trips/hr obtained when it also maximizes profit. In
any case, unilaterally committing to profit maximization gives one’s competitor the freedom to

25

Electronic copy available at: https://ssrn.com/abstract=4613247



Table 5: System performance in a duopoly dynamic game with non-deficit constraint. In each
cell, the first and second rows report the payoff vectors for Operator 1 and 2, respectively, where
the first/second element is its profit (¥/hr)/ridership (trips/hr), and the third row reports social
welfare (¥/hr).

Operator 2
s2 = p s2 = r

6850, 20274 -117, 9539
6850, 20274 0, 39387s1 = p

56180 62868
0, 39387 0, 23336

Operator 1

-117, 9539 0, 23336s1 = r
62868 57122

choose based on its own preference, a strong strategic position. If the competitor happens to
prioritize ridership, then Operator 1 will suffer significant losses.

The above analysis indicates that no rational operator should unilaterally commit to profit
maximization because doing so puts itself in a vulnerable position where it can lose both money
and ridership. Consequently, although the market reaches the Nash equilibrium under weak
preference (NEWP, defined in Section 3.1) when both operators opt for profit maximization, such
a scenario is improbable in real world. Moreover, if one’s competitor seeks to maximize ridership,
following suit becomes the dominant action. As a result, both operators striving to maximize
ridership is the only Nash equilibrium under strong preference (NESP, defined in Section 3.1),
which produces a total ridership of about 46,700 trips/hr, evenly split between the two rivals.
Of course, the two operators may cooperate and agree to an accord that forbids them from
attempting to maximize ridership. This will allow them to make much more money (¥6,850/hr
vs. ¥0/hr), while only mildly depressing the total ridership (from about 46,700 trips/hr to 40,500
trips/hr, a reduction of 13%). However, such cooperation is hard to come by in an unregulated
market.

Interestingly, the outcome under NESP is desirable from the point of view of social welfare.
While the operators may like the outcome in the upper-left cell in Table 5—their inability to
achieve it notwithstanding—society may prefer the outcome in the lower-right cell as it yields
higher social welfare. We note that, however, this need not always be the case.

Suppose one of the operators is determined to dominate the market by heavily subsidizing the
DLB operation. The willingness to run a large deficit will enable the operator to expand its fleet
and cut the price, thereby threatening the competitor’s market position. If the competitor has the
resources to respond in kind, the market may plunge into an intensive and destructive price war
that many Chinese mega cities have witnessed in 2016 - 2017 (Yang, 2020). This could lead to a
massive oversupply of bikes at an excessively low price. In the end, because the overall market
potential of biking is limited, much of the resources would be wasted, which is a detriment to
social good. To illustrate this point, consider a case where both operators are willing to run a
deficit of ¥20,000/hr. The results are reported in Table 6. In this case, if Operator 1 maximizes
ridership and Operator 2 maximizes profit (the lower-left cell), Operator 2 will be squeezed out of
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Table 6: System performance in a duopoly dynamic game with maximum loss ¥20,000 per hour.

Operator 2
s2 = p s2 = r

6850, 20274 NA, NA
6850, 20274 -20000, 58059s1 = p

56180 68055
-20000, 58059 -20000, 29012

Operator 1

NA, NA -20000, 29012s1 = r
68055 48480
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Figure 3: Total ridership and social welfare achieved by different fleet cap policies. (a) Both
operators maximize profit. (b) Both operators maximize ridership.

the market (highlighted as NA in Table 6), and the system is reduced to a monopoly. The action
profile corresponding to the lower-right cell is still an NESP,11 but now social welfare drops to
¥48,480/hr, the worst of all scenarios.

7.3 Role of regulation

Having revealed the negative consequences of an unregulated duopoly, we proceed to examine
what a regulator might do to avoid them. We assume (i) the regulator may cap either fleet size or
fare, but not both; (ii) when either restriction is imposed, the operators are still free to compete
with each other by setting the objective and making tactic decisions; and (iii) when an operator’s
objective is to maximize ridership, the regulator assumes it is willing to subsidize rides as much
as needed.

We first consider the fleet cap policy, which sets an upper bound on the number of bikes
each operator is allowed to put in the market. Figure 3 reports the market’s total ridership (left
y-axis) and social welfare (right y-axis) when both operators seek to maximize profit (Figure
3a) or ridership (Figure 3b). Regardless of the objective, a larger fleet cap always leads to higher

11When Operator 2 is forced out by choosing action p, its ridership and profit are both reduced to zero. If it chooses
r, it will lose ¥20000. However, since this deficit must be subsidized externally (e.g., by investors), Operator 2 is
assumed to be indifferent between (i) losing ¥20000 when choosing r and (ii) earning a zero profit when choosing p.
Thus, the lower-right cell corresponds to an NESP.
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ridership, though the marginal returns diminish quickly after the cap exceeds 100K. On the other
hand, social welfare first increases with the fleet cap, and then begins to drop precipitously once
reaching a certain threshold. It peaks in both cases when the fleet cap for each operator falls
between 50K and 65K.

Table 7: System performance in a duopoly dynamic game with a fleet cap = 61803 for each
operator; no budget constraint in r.

Operator 2
s2 = p s2 = r

10274, 19516 5398, 12605
10274, 19516 -6552, 39273s1 = p

60037 69480
-6552, 39273 -6176, 28056

Operator 1

5398, 12605 -6176, 28056s1 = r
69480 69741

We then assume the regulator sets the fleet cap at the value where social welfare is maximized
in Figure 3b (61,803). Table 7 reports the payoffs in a duopoly dynamic game. In this case,
both actions, i.e., p and r, are consistent no matter what the competitor’s action is. To see
this, let us assume Operator 1 adopts p. If Operator 2 also adopts p, then both earn a profit of
¥10,274/hr from serving 19,516 rides; Operator 2’s profit would drop to ¥-6,552/hr by switching
to r, suggesting p is consistent for Operator 2. In the above example, when Operator 2 switches
from p to r, its ridership increases from 19516 trips/hr to 39273 trips/hr, though its profit drops,
suggesting action r is consistent as well. The reader can verify that if Operator 1 adopts r, p and
r are still consistent actions for Operator 2. Therefore, under the “optimal” fleet cap policy, all
four action profiles in Table 7 are NEWP and no NESP exists, implying the market may settle at
any of the four competition scenarios. Importantly, the social welfare in any of the four scenarios
is significantly higher than their counterparts achieved without the regulation (see Table 6). The
fleet cap also improves profitability. Take the case where both operators adopt p. Under the
fleet cap, they each make ¥10274/hr, nearly 50% higher than what they would make without the
regulation. This makes sense because the cap prevents both operators from self-destructive fleet
expansion.

We next turn to the fare cap regulation, which restricts how much the operators can charge
the riders. Figure 4 reports the results when the operators have the same action. We can see
that when the objective is to maximize ridership, the fare cap policy affects neither ridership nor
social welfare (Figure 4b). This is because the competition pressure would force the operators
to set the fare so low that the cap is never activated. Moreover, as discussed earlier, r will be a
dominant action because it is not subject to a budget constraint per our assumption. Thus, the
fare cap policy is not an effective regulatory tool. In the unlikely scenario where both operators
seek to maximize profit, a price cap would make a difference. As shown in Figure 4a, the price
cap that attains the highest ridership and social welfare is around ¥0.2/km, which is significantly
lower than the optimal fare cap in a monopolistic market with similar settings (about ¥0.4/km;
see Zheng et al., 2023). The peak ridership and social welfare in a duopoly are also higher than
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those achieved in a monopolistic market with similar settings.
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Figure 4: Total ridership and social welfare achieved by different fare cap policies. (a) Both
operators maximize profit. (b) Both operators maximize ridership.

7.4 Asymmetry

Up to this point, the two operators in the duopoly are assumed to be identical. We now turn
to an asymmetric duopoly that consists of two heterogeneous operators. In Section 7.4.1, we
consider the case where the two operators differ from each other in their ability to sustain losses.
Section 7.4.2 examines how crucial operational characteristics, such as bike acquisition cost and
rebalancing efficiency, affect the system outcome.

7.4.1 Ability to sustain losses

Our goal is to show how the ability to sustain losses strengthens an operator’s position in a
duopoly. As noted before, when a lower profit target is allowed, r is a dominant action. Thus,
we assume both operators maximize ridership. The operators are identical except for their profit
target. As a baseline, we set the profit target for Operator 1 and 2 as ¥-5,000/hr and ¥-10,000/hr,
respectively. That is, Operator 2 is willing to lose ¥10000 per hour whereas Operator 1 can afford
only half of that loss.

As reported in Table 8, Operator 2 acquires a fleet about 60% larger and sets the fare about
30% lower than its competitor. This is expected because Operator 2 outspends Operator 1 at a ra-
tio of 2:1. As a result, Operator 2 captures about 66% of the DLB market and enjoys a significantly
higher utilization rate (2.3% vs. 1.9%). However, due to the lower price it charges, Operator 2’s
strong market position only brings in a revenue about 40% higher than the competitor. More-
over, the larger fleet also induces a much higher acquisition cost (61% more) and rebalancing cost
(66% more). For each thousand ridership gained, Operator 2 endures a loss of ¥290/hr, whereas
Operator 1 “pays” ¥281/hr. Thus, attempting to achieve dominance by overspending may not
scale well because the more one spends, the less gain one can achieve at the margin. To further
explore this issue, we change Operator 2’s maximum loss while keeping Operator 1’s fixed at ¥-
5000/hr. Figure 5 reports the optimal tactic decisions and main performance metrics of Operator
2, as its maximum loss varies from ¥-5000/hr to ¥-23000/hr. As expected, the greater deficit the
operator can tolerate, the larger fleet and the lower fare it can afford. However, the diminishing
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Table 8: DLB system performances when two ridership-maximizing operators have different
tolerance levels for monetary loss.

Access time (min) 2.01
Total ridership (trips/hr) 52,220
Social welfare (¥/hr) 56,828
operator: Operator 1 Operator 2
Maximum loss (¥/hr) -5,000 -10,000
Price (¥/km) 0.357 0.256
#bike 169,245 271,755
Utilization ratio 1.90% 2.30%
Ridership (trips/hr) 17,743 34,477
Profit (¥/hr) -5,000 (-60%) -10,000 (-86%)
Acquisition cost (¥/hr) 9,647 (116%) 15,490 (134%)
Rebalancing cost (¥/hr) 3,649 (44%) 6,051 (52%)
Revenue (¥/hr) 8,296 (100%) 11,541 (100%)
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Figure 5: Tactic decisions and performance metrics of Operator 2 against maximum loss (both
operators maximize ridership). (a) Fleet size and fare. (b) Ridership and bike utilization rate.
(Operator 1’s maximum loss is ¥5000/hr.)

returns to investment are evident: the curves for both the fleet size and the fare gradually level off
as the profit target stretches further into the negative territory (see Figure 5a). Moreover, Figure
5b indicates a fourfold increase in Operator 2’s operating losses (from ¥5,000/hr to ¥20,000/hr)
barely doubles its ridership.

7.4.2 Operational characteristics

Two operational features are examined in this section: unit bike acquisition cost and rebalancing
efficiency. The former includes the cost of purchasing and maintaining a shared bike amortized
over its life cycle (i.e., the parameter β0), while the latter is measured by the average number of
rebalancing trips needed to maintain a stable level of service per each bike trip (i.e., the parameter
α). A smaller α corresponds to a greater rebalancing efficiency, hence a lower rebalancing cost.
For simplicity, the two operators are assumed to have the same upper-level action in this section.
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Figure 6: System performance metrics in an asymmetric duopoly with profit-seeking operators.
Three tested scenarios are (i) operators are identical; (ii) the acquisition cost of Operator 1 is half
of that of Operator 2; (iii) the rebalancing efficiency of Operator 1 is twice that of Operator 2.

The first experiment considers profit-seeking operators, and consists of three scenarios (i) the
base scenario where the two operators are identical; (ii) the acquisition cost of Operator 1 is half
of Operator 2’s; (iii) the rebalancing efficiency of Operator 1 doubles that of Operator 2’s. Figure
6 reports four performance metrics in the three scenarios: profit, ridership, fare, and fleet size.

As expected, in Scenario (i), all performance metrics of the operators are the same. When
Operator 1’s acquisition cost is reduced by half (Scenario (ii)), it raises fare from ¥0.743/km to
¥0.826/km (see Figure 6c) and fleet size from 126,786 to 213,765 (see Figure 6d). Accordingly,
Operator 1’s ridership increases by 22% (Figure 6b) and its profit nearly doubled, rising from
¥6,850/hr to ¥12,966/hr (see Figure 6a). In contrast, under competitive pressure, Operator 2
is forced to reduce its fleet size to control the cost and to lower its fare to compensate for the
degraded level of service. As a result, while the overall DLB market produces more profit and
serves more trips, Operator 2 is much worse off compared to the benchmark. A similar pattern
emerges in Scenario (iii). Equipped with better rebalancing efficiency, Operator 1 rakes in greater
profit and ridership, by raising the price and expanding the fleet. However, the relative advantage
enjoyed by Operator 1 is noticeably smaller than that in Scenario (ii).

Figure 7 reports the results of the second experiment where both operators maximize rid-
ership without running a deficit. We similarly construct three scenarios: (iv) the base scenario
where the two operators are identical; (v) the acquisition cost of Operator 1 is one percent lower
than that of Operator 2; (vi) the rebalancing efficiency of Operator 1 is one percent better that of
Operator 2. In all scenarios, the profit earned by either operator is zero because that is the profit
target. We can see that Operator 1 enjoys a compelling competitive advantage across the board
over Operator 2, even with a seemingly minute improvement in operational efficiency. With a
slightly lower acquisition cost, for example, Operator 1 achieves a market share 65% higher than
its competitor (see Figure 7b). The effect of rebalancing cost is less dramatic, but still substan-
tially stronger than that revealed in the first experiment: an 8% gain in the market share for a
one percent cost reduction.
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Figure 7: System performance metrics in an asymmetric duopoly with ridership-maximizing
and profit-neutral operators. Three tested scenarios are: (iv) the base scenario where the two
operators are identical; (v) the acquisition cost of Operator 1 is one percent lower than that of
Operator 2; (vi) the rebalancing efficiency of Operator 1 is one percent better that of Operator 2.

While many of the above results are expected, the last finding is surprising. It suggests that
the operational characteristics matter much more when the operators seek market dominance,
and that a small operational advantage could swing the market position wildly. On the bright
side, such a hyper-intense environment may motivate the operators to focus on the betterment of
their operations (e.g., bike design and manufacturing and rebalancing strategies). However, for
regulators, the situation poses a challenge because it may lead to instability and unpredictability.

7.5 Sensitivity analysis

We first test the sensitivity of Scenario DU-p and DU-r (defined in Section 7.1) to the competition
factor k introduced in Equation (7). Recall that the value of k measures how sensitive the de-
mand distribution between the two operators is to fare discrepancy. Figure 8 reports the results
corresponding to k being set to 20%, 100% and 500% of the default value (i.e., 23200 trips/¥).
When travelers are highly sensitive to price (i.e. large k), profit-maximizing operators are forced
to lower fares to protect their market share, which depresses the total profit achievable (see Fig-
ure 8a). The same mechanism is at work when the operators seek to maximize ridership. That
is, high price sensitivity drives down price through competition, which then attracts more riders
(see Figure 8b).

We next consider how the number of operators in a DLB market might affect its performance,
especially the total ridership and profit for the operators. We consider a relatively mature market
in which all operators seek to maximize profit. Figure 9a reports ridership and social welfare
corresponding to different numbers of operators. As the number of operators increases, both
ridership and social welfare first rise sharply, indicating the system benefits from competition.
However, the incremental advantages of introducing an additional operator diminish rapidly,
and the benefit derived from market expansion becomes negligible once the market reaches a
total of four operators. In the case of social welfare, the additional operator actually becomes
counterproductive once the market is saturated by competition. Thus, one may argue that, in
this case, there is an optimal number of operators that a city may wish to allow to enter its
market. Of course, a regulator may also cap the fleet size (or fare) for each operator, which may
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Figure 8: Sensitivity of the system performance to the competition factor (k) in a duopoly where
both operators maximize profit (a) or ridership without a deficit (b).
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Figure 9: System performance metrics in an oligopoly market with different numbers of profit-
maximizing operators. (a) Total ridership and social welfare. (b) Profit.

affect the trend observed here. In the interest of space, we leave a more in-depth study to future
research.

From the perspective of the operators, the competition is a curse. Figure 9b shows that the
total profit shared by all operators declines precipitously with the number of operators in the
market. With four operators, which are “socially optimal”, each operator’s profit is less than 2%
of that in a monopolistic market. Thus, if an operator’s ultimate target is to make money, the only
way to achieve it is by driving most, if not all, rivals out of the market. This logic might explain
why the major DLB startups in China were committed to the pipedream of “winner-take-all”.

8 Conclusions

In this paper, we modeled the inter-operator competition in a dockless bike-sharing (DLB) market
as a dynamic game. Each DLB operator is first committed to an action tied to a specific objec-
tive, such as maximizing profit. Then, the operators play a lower-level game to reach a subgame
perfect Nash equilibrium, by making tactic decisions (e.g., pricing and fleet sizing). We defined
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the Nash equilibrium under weak preference (NEWP) and under strong preference (NESP) to
characterize the likely outcomes of the dynamic game, and formulated the demand-supply equi-
librium of a DLB market that accounts for key DLB operational features and travelers’ mode
choice. Our analysis of the demand-supply equilibrium confirmed the intuition that an operator
can always expect to gain market share by putting more bikes on streets. We also found a free
rider effect. That is, lowering the price could be a double-edged sword, because the induced
demand could benefit not only the operator that does cut the price, but also those that do not.

Using the oligopoly competition game model calibrated with empirical data from Chengdu,
China, we sought to explain the instability of an unregulated DLB market that underlay the
spectacular rise and quick fall of the industry in China. We showed that, when an operator is
determined to dominate the market at any cost, other operators have no choice but to follow suit
if they wish to stay in the game. This dilemma creates a race to the bottom, in the sense that
everyone is basically competing to lose more money. That is not the end of the story. Remarkably,
if everyone attempts to maximize ridership, even a slight improvement in the acquisition cost of
bikes can swing the outcome wildly, an ominous sign of high volatility. Moreover, even if every
operator agrees to focus on making money rather than seeking dominance, the profitability still
plunges quickly with the number of players. Thus, left to its own devices, the DLB market may
be doomed to implode under competitive pressure, as we have witnessed in China.

Having thus demonstrated that the DLB industry creates a competition for losers, we then
explore the possibility of regulating it. We conducted experiments with two regulatory policies:
a fleet cap and a price control. We found that a fleet cap, if implemented properly, can be
effective for not only preventing market failure but also improving social welfare. Moreover,
for the benefit of society, a city should not have more than a handful of operators. Our results
suggest that social welfare peaks when the number of operators is four in Chengdu, though at
that point, profitability has already sunk so low that it is doubtful any private investors would be
impressed. Finally, price control is not very useful, simply because the real problem was never
the high price, but too many bikes.

Our model was calibrated with a cross-sectional trip data set collected by a single operator,
which does not capture any market dynamics associated with competition. To a certain extent,
therefore, the predictions given by the model are but theoretical speculations. It does correctly
predict the collapse of an unregulated market, but one cannot know for sure if the mechanisms
embedded in our model agree with the real ones. A future study that strives to fix this short-
coming will need to re-calibrate the model with time-series data of multiple operators.

The present study assumes DLB operators are committed to maximizing either profit or rid-
ership. In reality, their objectives may encompass both profitability and market share; a “public”
operator may prioritize social welfare over these measures. More likely than not, the business
decisions of the operators are driven by a combination of all the conflicting objectives. As a result,
the action at the upper level is not to choose one from several targets (a discrete choice), but how
to best weigh them (a continuous one). A future study may extend the current game-theoretic
framework to allow such a general objective.
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A List of notations

Table A.1: List of notations

Parameter Notation

Fare schedule fi

Fleet size Bi

Number of idle bikes ni

Market share Qi

operator i Market proportion mi

Rebalancing trip distance Li

Total bike usage time per hour Ui

Total bike rebalancing time per hour Ri

Profit per hour Πi

Access time a
Average fare of DLB service f
Traveler’s trip length l
Lower bounds for the bike trip length l
Upper bounds for the bike trip length l̄
CDF of traveler’s trip length G(·)
Value of time µ

Walking speed vw

Biking speed vb

Driving speed vd

Market Rebalancing speed vr

Variable driving cost fd

Fixed driving cost τ

Access factor δ

Study area A
Total number of idle bikes n
Number of unique bike locations ñ
Rebalancing frequency α

Bike acquisition cost β0

Unit bike rebalancing cost β1

Total demand rate Q̄
bike-sharing demand rate Q
Competition factor kij

B Proof of Proposition 2

Consider a DLB duopoly, i.e., I = {1, 2} and suppose f1 ≤ f2. We first prove that ∂Q1/∂ f1 < 0

always holds. Next, we demonstrate that ∂Q2/∂ f2 < 0 if f2 − f1 <
[Q2n2−(n1+n2)k12 f /η f ]Q

(n1+n2)k12Q2
. Lastly,

we show that the analysis of ∂Q1/∂ f2 and ∂Q2/∂ f1 can be conducted similarly, while giving the
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conditions under which the monotonicity of Q1 (Q2) with respect to f2 ( f1) holds.
First, taking the derivative of operator 1’s ridership with respect to f1 yields

∂Q1

∂ f1
=

n1

n1 + n2

∂Q
∂ f1

− k12, (24)

Equation (6) indicates
f = m1 f1 + (1 − m1) f2 = m1( f1 − f2) + f2. (25)

Accordingly, the derivative of f with respect to f1 is

∂ f
∂ f1

=
∂m1

∂ f1
( f1 − f2) + m1. (26)

Substituting Equation (7) into Equation (5), and taking derivative on both sides with respect to
f1 yields

∂m1

∂ f1
=

k12

Q2 ( f1 − f2)
∂Q
∂ f

∂ f
∂ f1

− k12

Q
. (27)

We shall show Equations (26) and (27) cannot hold at the same time unless ∂ f
∂ f1

> 0. To see

this, let us suppose ∂ f
∂ f1

≤ 0 and recall that ∂Q
∂ f < 0 and per assumption f1 − f2 ≤ 0. Therefore,

RHS of Equation (27) is negative, indicating ∂m1
∂ f1

< 0. Accordingly, per Equation (26) ∂ f
∂ f1

> 0,

a contradiction with our assumption that ∂ f
∂ f1

≤ 0. Therefore, it must hold that ∂ f
∂ f1

> 0. Note

that ∂Q
∂ f1

= ∂Q
∂ f

∂ f
∂ f1

< 0 (recall that ∂Q
∂ f < 0 by definition). Using this condition in Equation (24), we

arrive at ∂Q1
∂ f1

< 0. This completes the first part of proof.
Next, taking the derivative of operator 2’s ridership with respect to f2 yields

∂Q2

∂ f2
=

n2

n1 + n2

∂Q
∂ f2

− k12. (28)

From Equation (6), we have f = Q1 f1+Q2 f2
Q1+Q2

. Take the derivative with respect to f1 on both sides
yields

∂ f
∂ f1

=
Q1Q − ( f1 − f2)k12Q + (Q2n1−Q1n2)( f1− f2)

n1+n2

∂Q
∂ f1

(Q1 + Q2)
2 . (29)

Let η f =
∂Q/Q
∂ f / f be the elasticity of total bike-sharing demand with respect to f . Accordingly, we

can rewrite ∂ f
∂ f1

as

∂ f
∂ f1

=
∂ f
∂Q

∂Q
∂ f1

=
f

Qη f

∂Q
∂ f1

. (30)

Combining Equation (29) and Equation (30) we can solve

∂Q
∂ f1

=
Q1Q − ( f1 − f2)k12Q
f Q
η f

− (Q2n1−Q1n2)( f1− f2)
n1+n2

. (31)

From the first part of proof, we know ∂Q
∂ f1

< 0. As the numerator of the RHS in Equation (31) is
positive (recall that f1 ≤ f2 by definition), the denominator of Equation (31) has to be negative,
i.e., f Q

η f
− (Q2n1−Q1n2)( f1− f2)

n1+n2
< 0.
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Repeating the above procedure for the derivative with respect to f2 we obtain

∂Q
∂ f2

=
Q2Q + ( f1 − f2)k12Q
f Q
η f

− (Q2n1−Q1n2)( f1− f2)
n1+n2

. (32)

Plugging Equation (32) in Equation (28) yields

∂Q2

∂ f2
=

{
[Q2n2−(n1+n2)k12 f /η f ]Q

(n1+n2)k12Q2
− ( f2 − f1)

}
(n1 + n2)k12Q2

(n1 + n2) f Q/η f − (Q2n1 − Q1n2)( f1 − f2)
. (33)

Recall that we have f Q
η f

− (Q2n1−Q1n2)( f1− f2)
n1+n2

< 0 from Equation (31). Thus, the denominator of

the RHS in Equation (33) is negative. It then follows that ∂Q2
∂ f2

< 0 if the numerator of Equation

(33)’s RHS is positive, i.e., f2 − f1 < d2 ≡ [Q2n2−(n1+n2)k12 f /η f ]Q
(n1+n2)k12Q2

. This completes the second part of
proof.

We can repeat the above analysis (details omitted for brevity) to obtain ∂Q1
∂ f2

and ∂Q2
∂ f1

:

∂Q1

∂ f2
=

[
(Q2n1+(n1+n2)k12 f /η f )Q

(n1+n2)k12Q1
− ( f2 − f1)

]
(n1 + n2)k12Q1

(n1 + n2) f Q/η f − (Q2n1 − Q1n2)( f1 − f2)
, (34)

∂Q2

∂ f1
=

[
(Q1n2+(n1+n2)k12 f /η f )Q

(n1+n2)k12Q2
+ ( f2 − f1)

]
(n1 + n2)k12Q2

(n1 + n2) f Q/η f − (Q2n1 − Q1n2)( f1 − f2)
. (35)

Based on the same method used to determine the sign of Equation (33), we can establish that
∂Q1
∂ f2

< 0 if f2 − f1 < d3 ≡ [Q2n1+(n1+n2)k12 f /η f ]Q
(n1+n2)k12Q1

, and ∂Q2
∂ f1

< 0 if f2 − f1 > d1 ≡ − [Q1n2+(n1+n2)k12 f /η f ]Q
(n1+n2)k12Q2

.

Finally, note that d2 − d3 =
[( f2− f1)Q2−Q f /η f ]Q

Q1Q2
> 0 → d2 > d3.

C Proof of Proposition 3

Let us first substitute Li in Equation (8) with Equation (13) and take derivative with respect to Bi

on both sides:

1 =
∂n∗

i
∂Bi

+
Q̄
vb

(
mi l̄

∂G(l̄)
∂l̄

∂l̄
∂Bi

− mil
∂G(l)

∂l
∂l

∂Bi
+

∂mi

∂Bi

∫ l̄

l
xdG(x)

)
+

δ

2vr

√
ñi Aα

n∗
i Qi

(
Qi

∂(n∗
i /ñi)

∂Bi
+

n∗
i

ñi

∂Qi

∂Bi

)
. (36)

We shall show the above equality cannot hold unless ∂n∗
i

∂Bi
> 0. To see this, suppose ∂n∗

i
∂Bi

≤ 0.

Note that ∂G(l̄)
∂l̄ > 0 and ∂G(l)

∂l > 0 per the property of CDF. With fixed nj, ∀j ∈ −i, the partial
derivatives in Equation (36) can be expanded as follows

∂l̄
∂Bi

=
∂l̄
∂a

∂a
∂n∗

i

∂n∗
i

∂Bi
, (37)
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∂l
∂Bi

=
∂l
∂a

∂a
∂n∗

i

∂n∗
i

∂Bi
, (38)

∂mi

∂Bi
=

1
∑j∈I nj

[
∑j∈−i nj

∑j∈I nj
+

∑j∈−i kij( fi − f j)

Q
ηn

]
∂n∗

i
∂Bi

, (39)

∂(n∗
i /ñi)

∂Bi
=

1
ñ2

i

(
ñi − n∗

i
∂ñi

∂n∗
i

)
∂n∗

i
∂Bi

, (40)

∂Qi

∂Bi
=

 ∑j∈−i nj(
∑j∈I nj

)2 Q +
n∗

i

∑j∈I nj

∂Q
∂n∗

i

 ∂n∗
i

∂Bi
. (41)

From Equation (3), we can see that ∂l̄/∂a ≤ 0 and ∂l/∂a ≥ 0. Besides, Equation (10) indicates
∂a/∂n∗

i < 0. Therefore, we have ∂l̄/∂Bi ≤ 0 and ∂l/∂Bi ≥ 0 per the assumption that ∂n∗
i

∂Bi
≤ 0.

From Equation (39), ∑j∈−i kij( fi − f j) ≥ 0 → ∂mi
∂Bi

≤ 0. If ∑j∈−i kij( fi − f j) < 0, the term in the

square bracket of Equation (39) can be rewritten as
[
∑j∈−i kij( fi − f j)

]
(ηn − 1) + Q − Qi. Since

ηn ≤ 1 per the condition given in the proposition, the term in the square bracket of Equation (39)
is positive. Therefore, we know ∂mi

∂Bi
≤ 0 always holds independent of the sign of ∑j∈−i kij( fi − f j).

Now we have shown that the second term in the RHS of Equation (36) must be non-positive.
The sign of ∂(n∗

i /ñi)
∂Bi

depends on that of ñi − n∗
i

∂ñi
∂n∗

i
. Note that

∂

∂n∗
i

(
ñi − n∗

i
∂ñi

∂n∗
i

)
= −n∗

i
∂2ñi

∂n∗2
i

. (42)

As per Assumption 3, ∂2ñi/∂n∗2
i ≤ 0. Also, if n∗

i = 0, ñi = z(0) = 0 per definition. Hence
ñi − n∗

i
∂ñi
∂n∗

i
= 0 when n∗

i = 0. As its gradient is non-negative when n∗
i > 0 as per Equation (42), it

must be non-negative for n∗
i ≥ 0. Thus, per the assumption ∂n∗

i /∂Bi ≤ 0, ∂(n∗
i /ñi)/∂Bi ≤ 0.

Finally, ∂Q/∂n∗
i can be expanded as

∂Q
∂n∗

i
= Q̄

(
∂G(l̄)

∂l̄
∂l̄
∂a

∂a
∂n∗

i
− ∂G(l)

∂l
∂l
∂a

∂a
∂n∗

i

)
≥ 0. (43)

Equation (41) shows that ∂Qi/∂Bi ≤ 0 when ∂n∗
i /∂Bi ≤ 0, which indicate the third term in the

RHS of Equation (36) is also non-positive.
To summarize, with the assumption ∂n∗

i /∂Bi ≤ 0, we show that RHS of Equation (36) must be
non-positive, which leads to a contradiction since Equation (36) dictates it equal 1 at equilibrium.
Therefore, ∂n∗

i /∂Bi > 0, which completes the proof.

D Differentiation of market demand-supply equilibrium

The value of ∂Li
∂yi

depends on the derivatives of market performance (such as Qi, Q, Πi) with

respect to operator i’s tactics, i.e., Bi and fi. In what follows, we explain how to compute ∂Qi
∂Bi

using automatic differentiation (Baydin et al., 2018) in each iteration. The other derivatives can
be computed similarly.
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Taking derivative of Bi on both sides of Equation (7) yields:

∂Qi

∂Bi
=

ni

∑j∈I nj

∂Q
∂Bi

+
Q(

∑j∈I nj

)2

(
∂ni

∂Bi
∑
j∈I

nj − ni ∑
j∈I

∂nj

∂Bi

)
. (44)

To calculate ∂Q
∂Bi

, we take derivative of Bi on both sides of Equation (4). leading to

∂Q
∂Bi

= Q̄
(

∂G(l̄)
∂l̄

∂l̄
∂Bi

− ∂G(l)
∂l

∂l
∂Bi

)
, (45)

where ∂l̄
∂Bi

and ∂l
∂Bi

can be computed by Equation (3). Specifically, we have

∂l̄
∂Bi

=
−µ ( f + µ/vb − d − µ/vd)

∂a
∂Bi

− (τ − µa) ∂ f
∂Bi

( f + µ/vb − d − µ/vd)
2 , (46)

∂l
∂Bi

=
µ (µ/vw − f − µ/vb)

∂a
∂Bi

+ µa ∂ f
∂Bi

(µ/vw − f − µ/vb)
2 . (47)

Note also that from Equation (10)

∂a
∂Bi

= −δ
√

A
vw

1
2ñ−3/2

∂ñ
∂n ∑

j∈I

∂nj

∂Bi
. (48)

Since the values of all parameters in Equations (44) - (48) are available at equilibrium, ∂Qi
∂Bi

is a

function of ∂ f
∂Bi

and ∂nj
∂Bi

, ∀j ∈ I.

We next calculate the values of ∂ f
∂Bi

and ∂nj
∂Bi

, ∀j ∈ I. As per Proposition 1, the market equilib-
rium can be represented as a fixed point system of [n1, . . . , nI , f ]. Here, we denote it as functions:
f = Γ(n1, . . . , nI , f ), nj = ∆j(n1, . . . , nI , f ), ∀j ∈ I. Taking derivative of Bi on both sides, we have

∂ f
∂Bi

=
∂Γ
∂Bi

+ ∑
e∈I

∂Γ
∂ne

∂ne

∂Bi
+

∂Γ
∂ f

∂ f
∂Bi

, (49a)

∂nj

∂Bi
=

∂∆j

∂Bi
+ ∑

e∈I

∂∆j

∂ne

∂ne

∂Bi
+

∂∆j

∂ f
∂ f
∂Bi

, ∀j ∈ I, (49b)

where ∂Γ
∂Bi

, ∂Γ
∂ne

, ∂Γ
∂ f , ∂∆j

∂Bi
, ∂∆j

∂ne
, and ∂∆j

∂ f , ∀j, e ∈ I can be evaluated numerically by Equations (6) and
(15) using automatic differentiation.

Equation (49) is a linear equation system of ∂ f
∂Bi

and ∂nj
∂Bi

, ∀j ∈ I. Plugging the solution to

the linear system into Equations (44) - (48), we can get ∂Qi
∂Bi

. The other derivatives of the market

performance with respect to yi required for evaluating ∂Li
∂yi

can be computed similarly, hence

omitted here for brevity, which includes ∂Qi
∂ fi

, ∂Q
∂Bi

, ∂Q
∂ fi

, ∂Πi
∂Bi

, ∂Πi
∂ fi

.
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