How many are too many?

Analyzing dockless bikesharing systems with a parsimonious model.

NORTHWESTERN

UNIVERSITY

Hongyu Zheng, Kenan Zhang, Yu (Marco) Nie, Pengyu Yan, and Yuan Qu
Department of Civil and Environmental Engineering, Northwestern University

Introduction

Dockless bikesharing (DLB) system:
Healthy, environment friendly, affordable, flexible
Spectacular rise since 2015

- Fleet size grew 10,000 folds in 2.5 years in China. - Ridership reached 70 million per day in 2018.

Regulation challenges

- Nasty pricing wars and massive oversupply.
- Consumed much of the public space.

Operators struggled to properly maintain and position their fleets.
Our contribution
Take the regulator's perspective.
Capture the interdependence between bikesharing and other modes.
Joint fleet sizing and pricing decision.
Strive for a better balance between tractability and realism.

Basic model

Passenger demand Q_{h}
$\frac{\text { Passenger demand } Q_{h}}{\text { - Consider a city where people only travel by three modes }}$

- Travel cost:

Walking: $c_{w}=\frac{\mu}{v_{w}} l$
Biking via DLB: $c_{b}=\left(f_{b}+\frac{\mu}{v_{b}}\right) l+\mu a$
Driving (motorized modes): $c_{d}=\left(f_{d}+\frac{\mu}{v_{d}}\right) l+\tau$

Fig. 1 Illustration of mode split in a simplified mobility market.
Demand for biking: $Q_{b}=Q_{0}(F(\bar{l})-F(l))$
Bike supply (\#idle bikes n)
Platform variables: bike fleet size B and fare rate f_{b} - The conservation of total bike time:

Access time a

$$
a=\frac{\delta}{v_{w}} \sqrt{\frac{A}{\tilde{n}}}
$$

δ : parameter determined by city's geometry
A : the area of city
\tilde{n} : \#unique bike locations
its density is a function of the density of idle bikes, i.e ., $\frac{\tilde{n}}{A}=z\left(\frac{n}{A}\right)$. (unique location function)

Rebalancin

Each bike trip on average generates α rebalancing trips and
results in a loss of σ unique locations.

$$
\frac{\alpha Q_{b}}{\sigma Q_{b}}=\frac{n}{\tilde{n}} \rightarrow \sigma=\frac{\alpha \tilde{n}}{n}
$$

The average rebalancing distance between a bike to be rebalanced and the nearest replenishment location:

$$
L=\delta \sqrt{\frac{A}{\sigma Q_{b}}}=\delta \sqrt{\frac{n}{\tilde{\tilde{n}}} \frac{A}{\alpha Q_{b}}}
$$

Proposition 1:
Given a bike fleet size B and a fare rate f_{b}, the equilibrium defined in the base model always has a solution.

Proposition 2:

The number of idle bikes n strictly increases with the fleet size B.

System design problems

$$
\begin{aligned}
& \text { Profit maximization } \\
& \max _{B, f_{b}} R=f_{b} Q_{0} \int_{\underline{l}}^{\bar{l}} x \mathrm{~d} F(x)-\beta_{0} B-\beta_{1} \alpha L Q_{b} . \\
& \text { s.t. Equilibrium constraints, } B \geq 0, f_{b} \geq 0
\end{aligned}
$$

Proposition 3: Suppose a DLB operator aims to maximize profit while maintaining a stable level of service, i.e., a constant access time
\checkmark A higher rebalancing speed v_{r} always leads to a greater profit.
\checkmark The optimal fare rate f_{b}^{*} with a lower rebalancing speed dominates that with a higher rebalancing speed in the strong set order.

Ridership maximization:
$\max _{B, f_{b}} Q_{b}$ s.t. Equilibrium constraints, $B \geq 0, f_{b} \geq 0$
Social welfare maximization (system cost minimization $\min _{B, f_{b}}$ DLB operator's cost + Walking/Biking/Driving cost
s.t. Equilibrium constraints, $B \geq 0, f_{b} \geq 0$

Case study

Full sampled DLB trip records from a large DLB operator in
Chengdu, China (43 days, $15,367,275$ trips in total)
\#DLB bikes: 1.1 million (09/2018).

- Fleet cap: 0.6 million ($05 / 2019$); 0.45 million ($05 / 2020$).

Fii. 2 Spatial and temporal distribution of trip records.
Specification of unique bike location function
Trips are sliced in time intervals (30 mins) and subareas (240)
\#lde bikes n : If one bike is parked within a space-time
slot, record its location.
\#Unique bike locations \tilde{n} : For each space-time slot, apply DBSCAN (MinPts=2, $\varepsilon=10 \mathrm{~m}$).

Fig. 3 Ill Itration of clustering results.
(474 bikes $\rightarrow 322$ unique locations)

Counterfactual scenarios

Table 1: DLB system performances: (i) profit maximization; (ii) ridership maximizatio
with non--negative profiti and (iii) scocial opotitium:

Scenarios	i	i	ii	iv
(\#km)				
\#tike	${ }^{75,578}$	${ }^{138,144}$	${ }^{51,496}$	
Cess time (min)	1.04			
eage tii		1.40		26
Uuilization ratio	4.62\%	7.39\%	7.45%	
ship		${ }_{\text {52,583 }}$	${ }_{\text {5 5, 357 }}$	
		94,405		
Proint Mainin cost		7.874 (179\%)		
ting cost	$2(3 \%)$	2,055 (11\%)	$2.1351(180 \%)$	

Scenario (ii) delivers a more balanced performance:

- an affordable price to maintain revenue neutrality
- ridership and social welfare close to system optimum
- a much smaller fleet than what is currently deployed

Options of a regulator

- Regulator: maximize bike ridership or social welfare by restricting either the price or the fleet size
- Operator: maximize profit or ridership regardless of the regulations.

${ }^{3}{ }^{8^{4}}(3)$

(4)

Fig. 6 Ridership and social welfare achieved when the operator maximizes profit (1,21 price control (2,44 , fleet size optimized with pricic less than fis

Conclusions

- Current fleet cap set by Chengdu $(450,000)$ should be cut by roughly two thirds in order to avoid severe oversupply and waste.
Maximizing ridership with non-negative profit delivers more balanced outcomes.
> The choice of regulator policy depends on the operator' objective:
- If its focus is profit, limiting price is more effective Between $¥ 0.2$ and $¥ 0.4$ per km for Chengdu.
If it aims to grow ridership for a dominant marke position, then fleet size limit is a better strategy.

