
Transportation Research Part B 138 (2020) 23–45 

Contents lists available at ScienceDirect 

Transportation Research Part B 

journal homepage: www.elsevier.com/locate/trb 

Dynamic optimization strategies for on-demand ride services 

platform: Surge pricing, commission rate, and incentives 

Xiqun (Michael) Chen 

a , Hongyu Zheng 

a , b , Jintao Ke 

c , Hai Yang 

c , ∗

a College of Civil Engineering and Architecture, Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310058, PR China 
b Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA 
c Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 

Hong Kong, PR China 

a r t i c l e i n f o 

Article history: 

Received 17 July 2019 

Revised 3 April 2020 

Accepted 3 May 2020 

Keywords: 

On-demand ride services 

Surge pricing 

Commission rate 

Incentives 

Dynamic vacant car-passenger meeting 

a b s t r a c t 

On-demand ride services reshape urban transportation systems, human mobility, and trav- 

elers’ mode choice behavior. Compared to the traditional street-hailing taxi, an on-demand 

ride services platform analyzes ride requests of passengers and coordinates real-time sup- 

ply and demand with dynamic operational strategies in the ride-sourcing market. To test 

the impact of dynamic optimization strategies on the ride-sourcing market, this paper pro- 

poses a dynamic vacant car-passenger meeting model. In this model, the accumulative ar- 

rival rate and departure rate of passengers and vacant cars determine the waiting number 

of passengers and vacant cars, while the waiting number of passengers and vacant cars 

in turn influence the meeting rate (which equals to the departure rate of both passengers 

and vacant cars). The departure rate means the rate at which passengers and vacant cars 

match up and start a paid trip. Compared with classic equilibrium models, this model can 

be utilized to characterize the influence of short-term variances and disturbances of cur- 

rent demand and supply (i.e., arrival rates of passengers and vacant cars) on the waiting 

numbers of passengers and vacant cars. Using the proposed meeting model, we optimize 

dynamic strategies under two objective functions, i.e., platform revenue maximization, and 

social welfare maximization, while the driver’s profit is guaranteed above a certain level. 

We also propose an algorithm based on approximate dynamic programming (ADP) to solve 

the sequential dynamic optimization problem. The results show that our algorithm can ef- 

fectively improve the objective function of the multi-period problem, compared with the 

myopic algorithm. A broader range of surge pricing and commission rate and the intro- 

duction of incentives are helpful to achieve better optimization results. The dynamic op- 

timization strategies help the on-demand ride services platform efficiently adjust supply 

and demand resources and achieve specific optimization goals. 

© 2020 Elsevier Ltd. All rights reserved. 

 

 

1. Introduction 

In cities, taxi acts as an essential component of urban transportation systems due to its efficiency and flexibility. The

strategies for regulating the taxi market have attracted researchers’ interests since the 1970s. The early studies established
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an aggregate supply-demand model to characterize the taxi’s and passengers’ behavior under the assumption of either a

competitive or monopolistic market ( Douglas, 1972 ; Beesley and Glaister, 1983 ; Cairns and Liston-Heyes, 1996 ). To capture

the spatial structure in the meeting between a waiting customer and a vacant taxi, Yang and Wong (1998) first modeled

urban taxi services at a network level. In that model with various origin-destination (OD) pairs, taxis chose one origin to

pick up passengers by minimizing the cost of searching time. Based on the analytic framework, extended studies further

characterize congestion effects, multiple taxi user classes and taxi modes, taxi’s cruising strategies, and search frictions in

the taxi market ( Wong and Yang, 1998 ; Yang et al., 2001 , 2005 , 2010b , 2012 , 2014 ; Ke et al., 2019 ; Yang and Yang, 2011 ). 

The taxi market is a typical two-sided market with a platform (taxi company or the government) that connects the

demand side (i.e., passengers) and supply side (i.e., vacant taxis). Passengers choose taxi services or other travel modes

by considering the waiting time and taxi fare, while taxis decide locations to meet passengers by considering the trade-

off between the profitability of the locations and searching costs to the locations. Yang and Yang (2011) first proposed a

meeting function to characterize search frictions between drivers of vacant taxis and waiting passengers. It was pointed out

that the meeting rate in one specific zone was determined by the density of waiting passengers and vacant taxis at that

moment. The equilibrium state could be reached when the arrival rate of waiting passengers exactly matched the arrival

rate of vacant taxis. There are two main leverages for the platform, i.e., price control, and entry limitation (which controls

the taxi fleet size), to affect the equilibrium state of the taxi market. 

The e-platform of on-demand ride services, which is enabled with emerging mobile internet techniques, is now reshaping

the traditional taxi market. Although the on-demand ride services platform is similar to a taxi operator on providing a two-

sided market, there exist differences between them. The on-demand ride services platform collects real-time information

from both hailing cars and passengers, and thus has more leverages to influence the short-term demand and supply of

the market. On the demand side, time-varying surge pricing (different charges during different time periods) implemented

by the platform can affect passengers’ willingness to select the travel mode of the on-demand ride services platform. On

the supply side, the platform uses time-varying surge pricing, commission rate of trip fare, dispatching rules, and incentive

mechanism (e.g., order bonus, point award, and dispatching priority) to determine the number of vacant cars during each

time interval of a day. Also, some platforms (e.g., Uber, and DiDi) dispatch orders to the vacant hailing cars but do not let

them independently select orders. It indicates that the models which characterize customer-search behavior of taxi can no

longer represent the dispatch-oriented ride-sourcing market. 

Since the emergence of on-demand ride services at the beginning of the 2010s, there have been extensive studies on

analyzing drivers’ and passengers’ behavior in the ride-sourcing market. Zha et al. (2016) utilized the meeting function to

characterize matching properties of the ride-sourcing market and examined the optimal pricing and fleet sizing strategies of

the platform under a competitive and monopolistic market. He and Shen (2015) and Wang et al. (2016) examined drivers’

and passengers’ behavior in the e-hailing taxi market under the view of aggregated equilibrium and spatial equilibrium,

respectively. Zha et al. (2017) modeled the labor supply of ride-sourcing drivers and investigated the impact of surge pric-

ing using a bi-level optimization framework. The lower-level optimization model was used to capture the drivers’ choices

of working hours under an equilibrium state, while the upper-level optimization model was utilized to maximize the total

revenue through surge pricing, i.e., differentiated pricing across hours. Yang et al. (2020b) developed a reward scheme in-

tegrated with surge pricing, which allowed users to pay an additional amount to a reward account during peak hours, and

then use the balance in the reward account to compensate for their trips during off-peak hours. 

Fruitful research efforts have been made to examine the ride-sourcing market and taxi market under the view of equilib-

rium, while how to characterize dynamic variances and cumulative effects of drivers’ and passengers’ numbers in multiple

periods is still challenging. The assumption of equilibrium may not be reached when we consider a short time interval

(such as several minutes), which limits its ability to capture short-term or real-time properties of different stakeholders of

on-demand ride services. 

In this paper, we make an initial attempt to utilize a meeting model to characterize the vacant car-passenger dynamic

matching properties in a ride-sourcing market. In this model, the numbers of passengers and vacant cars are determined by

the accumulative arrival/departure rate of passengers and vacant cars, respectively. We assume that the cumulative number

of passengers and vacant cars in one day are equal rather than assuming equilibrium in each time instant or time interval,

which is different from the previous studies. By further assuming the departure rates of vacant cars and passengers are equal

to the meeting rate, the variables (including numbers of waiting vacant cars and passengers, and arrival rates of vacant cars

and passengers) in the model are endogenously correlated. When the matching is executed at the end of each matching

interval, the number of successful pairings depends on the numbers of passengers and vacant taxis in the two matching

pools, and is independent of the detailed arrival process of passengers and vehicles within each short matching interval. It

is not a microscopic bilateral searching and matching process as in the traditional cruising taxi markets, although drivers

may strategically move to some locations. Both the potential vacant car supply rate and potential passenger demand rate

are considered as exogenous variables in the model. Compared with classic equilibrium models, the endogenous variables

in this dynamic meeting model is more sensitive to the current exogenous information (i.e., potential vacant car supply rate

and potential passenger demand rate). Therefore, this proposed meeting model can be utilized to characterize the impact

of short-term variances and disturbances of current demand and supply on the numbers of waiting passengers and vacant

cars. 

In the application process of the actual on-demand ride service platform, the operation problem is a classical dynamic

programming multi-period optimization problem, which is usually solved by recursively computing. However, due to the
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continuity of the state variables, exogenous variables, and decision variables, this problem suffers from the curse of dimen-

sionality and becomes extremely hard to solve. So, we develop an effective non-myopic algorithm based on approximate

dynamic programming (ADP) to solve it, in which we consider the real-time market’s supply and demand information, as

well as the influence of current operations on the following time periods, in the optimization process. The results show

that ADP can effectively improve the objective function of the multi-period optimization model, compared to the myopic

optimization algorithm. When a vast amount of demand (e.g., as a result of a special event) occurs, ADP is also able to

significantly improve the effect of dynamic pricing and balance demand and supply. 

Based on the proposed meeting model and ADP algorithm, we further test different operational strategies for different

goals, e.g., platform revenue, and social welfare. We find that maximizing a certain objective function will cause different

influences on other optimization goals. Finally, we test the sensitivity of optimization constraints, i.e., the range of surge

pricing, bounds of commission rate, and the introduction of incentives for passengers/drivers, on different objective func-

tions. The methodological contributions of this paper are threefold: (a) A dynamic vacant car-passenger meeting model is

firstly proposed to characterize the current demand and supply’s impact on the ride-sourcing market. (b) We simultaneously

consider surge pricing, commission rate, and incentives for passengers/drivers, which is closer to the actual situation of the

on-demand ride services platform’s optimization strategies. (c) An ADP based algorithm is developed to solve the sequential

decision problem. 

The remainder of this paper is organized as follows. Section 2 presents a brief literature review on taxi market modeling,

operations, and solution methodologies under the view of equilibrium, as well as some emerging studies on the on-demand

ride services market. Section 3 proposes the dynamic vacant car-passenger meeting model and introduces platform op-

erations such as surge pricing, commission rate, and incentives. The demand and supply based on the dynamic meeting

scenario are discussed in Section 4 . In Section 5 , we formulate two platform objective functions and the corresponding op-

timization problems, then the solution algorithm based on ADP is developed. Section 6 presents the numerical experiments

that examine the performance of the proposed model. Finally, Section 7 draws conclusions and outlooks on future research.

2. Literature review 

The traditional taxi market has been extensively studied since the 1970s. The main difference between the taxi market

and classical supply-demand market is that there always exist vacant taxis which cruise to pick up passengers, due to the

spatial search frictions. Therefore, the total supplied service hour is always longer than the total demanded service hour.

The gap between them determines the waiting time of passengers. In turn, both the passenger waiting time and taxi fare

influence taxi demand, which results in a complicated and endogenous relationship between state variables in the taxi

market. Under such an aggregated and abstract equilibrium framework, continuous effort s have been made by economists

to better understand drivers’ and passengers’ behavior ( Douglas, 1972 ; Beesley, 1973 ; De Vany, 1975 ). 

In the 1990s, Yang and Wong (1998) modeled the spatial structure in equilibrium models and tried to understand taxi

spatial customer-search behavior better. Since 2010, meeting functions had been utilized to model searching and meeting

frictions between passengers and vacant taxis ( Yang and Yang, 2011 ; Yang et al., 2012 , 2014 ). A meeting function formulates

the relationship between the meeting rate and numbers of vacant taxis and waiting passengers. The meeting rate is always

monotonically increasing with the number of vacant taxis and waiting passengers, but the meeting function can exhibit

increasing, constant, or decreasing returns to scale. Yang et al. (2010a) found that drivers may waste substantial time waiting

in the airports, leading to a supply shortage in the downtowns, but further showed that a nonlinear fare structure could help

alleviate this market failure. Chen et al. (2019) developed a physical model to capture passenger-driver matching process,

then Zhang et al. (2019) tried to calibrate the parameters in the meeting functions based on the proposed physical model. 

Recently, on-demand ride services platforms, e.g., Uber and DiDi, have changed the traditional taxi industry from the

perspectives of the matching process and the supply side of the market. At the same time, they bring lots of interesting and

challenging issues. Ride-sourcing or transportation network companies (TNCs) refer to an emerging urban mobility service

mode in which private car owners use their own vehicles to provide for-hire rides ( Chen et al., 2017 ). Ride-sourcing services

can be completed via smartphone applications. The platform serves as a coordinator who matches requesting orders from

passengers (demand) and vacant registered cars (supply). Consequently, the platform can adopt time-varying strategies to

operate the meeting market, such as incentive mechanisms and surge pricing. For example, Yang et al. (2020a) proposed to

dynamically adjust two key decision variables in the on-demand matching, namely, the matching time interval and matching

radius, to maximize the system efficiency, in response to the real-time supply-demand conditions. Qian et al. (2017) inves-

tigated the taxi group ride problem that aimed at grouping passengers with a similar origin, destination, and departure

time to save combinable trips, and explored the best incentives for a taxi group ride to maximize efficiency. According to

that work, over 47% of the total taxi trip mileage might be saved by using the proper level of incentives. Surge pricing

serves as one of the most common strategies of the on-demand ride services platform. It was proved that the platform

which dynamically determined the price (for passengers) and wage (for drivers) could achieve a higher revenue than the

platform providing the fixed commission ( Cachon et al., 2017 ). Banerjee et al. (2015) proposed dynamic pricing strategies

where the price was adjusted by the number of vacant cars in the queue. It was stated that the scheme of surge pricing

performed better than the optimal static pricing when the platform didn’t have complete information. Guda and Subra-

manian (2019) pointed out that the platform should adopt different strategies to manage the market based on the level

of demand surge and the proportion of drivers needed to move from adjacent areas, such as informing drivers where to
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move, incentives, and strategic surge pricing. Inspired by UberPool, Yan et al. (2019) discussed how to coordinate dynamic

pricing and pool-matching technologies to better operate the ridepooling services, which allow one vehicle to serve two or

more passengers in each ride. Bai et al. (2019) built an analytical model with endogenous supply and demand based on a

queueing model and analyzed the optimal price/wage rates to optimize social welfare or platform revenue. 

Most above works discuss the incentive mechanisms and surge pricing under the view of the taxi/ride-sourcing market’s

equilibrium. However, the ideal operating strategies of the ride-sourcing market should be time-varying based on real-time

demand/supply information, which means that the strategies may change over time. Also, the market may not reach a sta-

tionary market equilibrium at every moment. So this paper introduces a dynamic vacant car-passenger meeting process to

characterize the short-term variances and disturbances of demand and supply caused by the dynamic optimization strate-

gies. At the same time, most of the previous studies concentrate on one specific kind of optimization strategies. By contrast,

our paper integrates various optimization strategies (i.e., surge pricing, commission rate, and incentives) in a dynamic envi-

ronment. 

However, the dynamic optimization problem will become too complicated to solve if considering multiple optimization

windows. To solve such sequential decision problems, the ADP algorithm is widely adopted to help dynamic programming

overcome the challenge caused by three curses of dimensionality, i.e., state space, outcome space, and action space. The

basic idea of the ADP algorithm is using some simulation and approximation methods to estimate the value function of

a high-dimensional state space, and making decisions based on the estimated approximate value function ( Bertsekas and

Tsitsiklis, 1995 ; Powell et al., 2001 ; Powell, 2014 ). There were also some other dynamic pricing models proposed to tackle

the challenging issues in the operations of the traditional taxi market and intelligent urban parking, which were also solved

by ADP ( Lei and Ouyang, 2017 ; Qian and Ukkusuri, 2017 ; Lei et al., 2020 ). 

3. Dynamic vacant car-passenger meeting 

3.1. Dynamic meeting model 

In this section, we establish a dynamic meeting model to characterize the vacant car-passenger meeting process in the

on-demand ride services market and discretize the whole day into a discrete-time finite-horizon system (i.e., K time inter-

vals). The mathematical notations used in the paper are summarized in the appendix. Assuming that every time interval’s

length is �t , one day will be divided into 60 × 24/ �t time intervals in the following discussion. Therefore, every time

interval is denoted as t = k · �t, k ∈ {1, …, K }. If the time interval is small enough, the differences between the discretized

market and the real-world market can be neglected. At last, the market clearing is assumed to be reached at the end of

each day while we do not enforce equilibrium at every short time interval. 

There are two underlying assumptions of the dynamic meeting process. (a) During every time interval, the number of

meeting passengers/drivers is determined by a meeting function of the number of waiting passengers and the number of va-

cant cars. (b) For every time interval, both the numbers of waiting passengers and vacant cars are endogenously determined

under a certain pricing strategy. These two assumptions were widely used in the static modeling framework of taxi markets.

Moreover, in the ride-sourcing market, a common practice in actual operations is the batch matching in which the platform

accumulates a certain number of idle drivers and waiting passengers and then implements a bipartite matching between

the accumulated drivers and passengers. In this setting, as the matching is executed at the end of each matching interval,

the number of successful pairings really depends on the numbers of passengers and vacant cars in the two matching pools.

As a result, these two assumptions are still deemed realistic. 

The supply and demand in a city are commonly heterogeneous over space and time, thus unbalanced supply and demand

should be considered in real-world operation strategies. For a specific region, we suppose the arrival rate of passengers at

time interval t is Q t , the arrival rate of vacant cars at time interval t is T v c t . N 

p 
t and N 

v c 
t are denoted as the waiting numbers of

passengers and vacant cars at time t , respectively. The meeting rate m t (assumed to be the departure rate of both passengers

and vacant cars) at time t is a function M of N 

p 
t and N 

v c 
t , while they can be calculated by the accumulative sum of the

difference between the arrival rates of passengers and vacant cars, i.e., Q t , T v c t , and meeting rate (departure rate) m t . The

mathematical relationships among these variables can be expressed as Eqs. (1 )–(3) , and illustrated in Fig. 1 . 

Meeting function: 

m t = M 

(
N 

p 
t , N 

v c 
t 

)
(1) 

Passengers: 

N 

p 
t = C Q t − C M t = 

t/ �t ∑ 

s =0 

( Q s ·�t − m s ·�t ) �t (2) 

Vacant cars: 

N 

v c 
t = C T v c t − C M t = 

t/ �t ∑ 

s =0 

(
T v c s ·�t − m s ·�t 

)
�t (3) 

where t ∈ { �t , …, K �t }. 
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Fig. 1. An illustration of dynamic meeting. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For any time interval t , meeting rate m t in Eq. (1) is nonnegative and continuously differentiable with ∂ m t /∂N 

p 
t > 0 and

∂ m t /∂N 

v c 
t > 0 in their domains N 

p 
t ≥ 0 , N 

v c 
t ≥ 0 . Furthermore, m t approaches 0 as either N 

p 
t or N 

v c 
t is close to 0. As a result,

we consider the following specific form of the Cobb-Douglas type production function ( Varian, 2004 ) of vacant car-passenger

meetings. 

m t = M 

(
N 

p 
t , N 

v c 
t 

)
= A 

(
N 

p 
t 

)α1 
(
N 

v c 
t 

)α2 
(4)

where A is the meeting parameter, which is negatively related to the size of the searching and meeting area; α1 and α2

are the elasticities of the meeting rate with respect to the number of unserved customers and the number of vacant cars,

respectively, at a given instant in time t . The Cobb-Douglas form meeting function is widely used in the modeling of taxi

or ride-sourcing markets (e.g., Yang and Yang, 2011 ; Zha et al., 2016 ). Moreover, Yang et al. (2014) showed that the Cobb-

Douglas form meeting function fits the relationships among passenger demand, average passenger waiting time and average

taxi waiting and cruising time in search of each passenger well, evaluated with statistics in Hong Kong. They showed that

the urban taxi services in Hong Kong exhibited a slight increasing return to scale. 

While in a stationary equilibrium state with market clearing in any time (we assume t → ∞ in that case), we have 

lim 

t→∞ 

Q t = lim 

t→∞ 

T v c t = lim 

t→∞ 

m t 

3.2. Surge pricing, commission rate, and incentives 

The pricing strategies of the on-demand ride services platform contain time-varying surge pricing, commission rate, and

incentives for passengers/drivers. All of them can significantly affect the ride-sourcing market from different aspects. More

specifically, time-varying surge pricing determines the passenger’s trip fare and influence passenger’s arrival rate. Vacant

car’s arrival rate is controlled by the driver’s utility, which is related to time-varying surge pricing and the platform’s com-

mission rate. Further, both arrival rates of passengers and vacant cars are influenced by incentives for passengers/drivers. 

While under the real on-demand ride services platform, these pricing strategies can be implemented by leveraging two

variables (i.e., dynamic pricing multiplier λt and commission rate ηt ). When λt ≥ 1, λt corresponds to time-varying surge

pricing, while λt represents the incentives for passengers when λt < 1. If ηt is positive, it means that the platform is

leveraging the commission rate for drivers. When ηt changes from a positive value to a negative one, it will become an

incentive for drivers. Therefore, these two variables ( λt and ηt ) are the main decision variables of the on-demand ride

services platform, and the type of pricing strategy is determined by the specific values and bounds of the variables. 

3.3. Relationship between variables 

Under a certain pricing strategy, the relationship between various variables in the on-demand ride services market at

time intervals is shown in Fig. 2 , in which white, light, and dark boxes represent the decision variables, utility functions,

and state variables, respectively. The impacts between different market variables take place along the solid lines. Given

the certain exogenous information (i.e., the potential supply rate of vacant cars and potential demand rate of passengers),
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Fig. 2. Relationship between various market factors at different time intervals. 

 

 

 

 

 

 

 

 

 

 

 

 

once the pricing strategy (i.e., dynamic pricing multiplier λt , and commission rate ηt ) is determined, all utility and state

variables in the market will be determined endogenously. On the demand side, potential customers will consider the trip

fare (influenced by dynamic pricing multiplier) and waiting time for vacant cars. From the perspective of supply, potential

drivers care about their income (influenced both by dynamic pricing multiplier and commission rate) and waiting time

for passengers. Furthermore, combined with the exogenous variables, the utility variables will determine the arrival rate of

passengers/vacant cars. Conversely, the number of waiting passengers and vacant cars will also influence the driver’s utility

and customer’s disutility. 

Finally, after the arrival rate and waiting number of passengers/vacant cars are determined endogenously, the meeting

rate during every time interval can be obtained by the meeting function. The dashed lines and dotted lines represent remain-

ing (unmatched) vacant cars and passengers in Fig. 2 . As a result, given the pricing strategy and the exogenous information,

all utility and state variables will be determined by the dynamic meeting market endogenously. 

Since meeting rate m t at different time intervals is determined by the aforementioned meeting function M( N 

c 
t , N 

v t 
t ) , m t 

in discrete time intervals can be expressed as Eq. (5) , and its relationship with λt , ηt can be written as m ( λt , ηt ). 

m t = A 

( 

Q t �t + 

t / �t −1 ∑ 

s =0 

( Q s ·�t − m s ·�t ) �t 

) α1 
( 

T v c t �t + 

t / �t −1 ∑ 

s =0 

(
T v c s ·�t − m s ·�t 

)
�t 

) α2 

(5) 

4. Demand and supply 

4.1. Passenger demand 

In the on-demand ride-sourcing market, passenger’s disutility μt is composed of the trip fare and monetary value of

waiting time and travel time, given by 

μt = F t + βw 

p 
t + β0 l t (6) 

where F t = F o + λt F t is the average trip fare; F o is the flag-drop fee; λt is the dynamic pricing multiplier; F t = ωl t is the time-

based charge; ω is the unit price of the average service time; l t is the average passenger’s trip time; w 

p 
t is the passenger

waiting time; β is the monetary value of waiting time, and β is the monetary value of in-vehicle travel time. 
0 
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Inspired by Yang et al. (2010b) , the meeting time in the market is 1/ m t . Thus, the expected passenger waiting time w 

p 
t ,

which is proportional to the meeting time and the number of waiting passengers N 

p 
t , can be calculated by 

w 

p 
t = 

N 

p 
t 

m t 
= 

1 

A 

(
N 

p 
t 

)α1 −1 (
N 

v c 
t 

)α2 
(7)

where A is the meeting parameter, α1 and α2 are the elasticities of the meeting rate in Eq. (4) . 

Passenger arrival rate Q t at time t is determined by disutility μt , and demand function f should be a monotonically

decreasing function on μt . Therefore, the demand function f is set as the following specific form: 

Q t = f ( μt ) = Q t exp ( −θμt ) (8)

where Q t is the potential passenger demand rate; θ is the demand scaling parameter that indicates the sensitivity of demand

to the full trip cost of passengers’, and it can be calibrated from the observational data. The demand function (8) implicitly

implies mode choices of passengers, who switch between ride-sourcing service and other modes; the demand for ride-

sourcing service is given by Q t , and the demand for other modes is given by Q t − Q t . It is noteworthy that this representation

of the demand function has been widely used in the literature (e.g., Yang et al., 2011 ; Zha et al., 2016 ). 

The price elasticity of demand E d based on function f is calculated in Eq. (9) . It indicates that Q t is relatively elastic, unit

elastic, and relatively inelastic, if μt > 

1 
θ
, μt = 

1 
θ
, or μt < 

1 
θ

, respectively. This property of function f is used to describe

that passenger demand is more sensitive to the disutility when the full trip price is relatively high and vice versa. 

E d = 

∂ Q t 

∂ μt 

μt 

Q t 
= −θμt (9)

Using the customer’s disutility defined in Eq. (6) and the customer’s waiting time function in Eq. (7) , the passenger

demand function can be written as 

Q t = Q t exp 

[ 

−θ

( 

F o + λt F t + 

β

A 

(
N 

p 
t 

)α1 −1 (
N 

v c 
t 

)α2 
+ β0 l t 

) ] 

(10)

4.2. Supply and revenue 

In the on-demand ride-sourcing market, we assume that every car driver is free to enter or exit the market. Therefore,

they determine whether to work based on maximizing their expected utility νt , which positively depends on expected

revenue and negatively on waiting and in-service time ( Wong et al., 2001 ). More specifically, the expected utility νt is given

by 

νt = F t ( 1 − ηt ) − φ
(
w 

v c 
t + l t 

)
(11)

where F t is average trip fare; ηt is the proportion that the platform extracts from the passenger fare; w 

v c 
t is vacant cars’

waiting time; φ is the value of operating expense for one car. 

In parallel to Eqs. (7) , (12) states that the expected car waiting time is proportional to the meeting time and the number

of waiting vacant cars N 

v c 
t ( Yang et al., 2010b ), given by 

w 

v c 
t = 

N 

v c 
t 

m t 
= 

1 

A 

(
N 

p 
t 

)α1 
(
N 

v c 
t 

)α2 −1 
(12)

The vacant car arrival rate T v c t at time t is determined by the car’s utility νt , and supply function g should be a mono-

tonically increasing function on νt when νt > ε 0 ( ε 0 is the opportunity cost of a driver). If driver utility νt is less than ε0 ,

no car will enter the market. Therefore, the supply function g is set as the following specific form: 

T v c t = g ( νt ) = 

{
T v c t exp 

(
− δ

νt 

)
, νt ≥ ε0 

0 , νt < ε0 

(13)

where T v c t is the potential vacant car supply rate; δ is the supply scaling parameter that indicates the sensitivity of supply

to the expected utility of drivers’. 

The price elasticity of supply E s based on function g is calculated in Eq. (14) . It indicates that T v c t is relatively elastic, unit

elastic, or relatively inelastic, if νt 〈 δ, νt = δ, or νt 〉 δ, respectively. This property of function g is used to describe that car

supply is more sensitive to the driver utility when the utility is relatively low and vice versa. 

E s = 

∂T v c t 

∂ νt 

νt 

T v c t 

= 

δ

νt 
(14)

Using the customer’s trip fare, driver utility defined in Eq. (11) and vacant car’s waiting time function of Eq. (12) , the

vacant car arrival function can be written as: 

T v c t = g ( νt ) = 

⎧ ⎨ 

⎩ 

T v c t exp 

[
− δ

( F o + λt F t ) ( 1 −ηt ) −φ
(

1 /A ( N p t ) 
α1 ( N v c t ) 

α2 −1 + l t 
)
]
, νt ≥ ε0 

(15)
0 , νt < ε0 
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4.3. Market analysis 

To simplify the analysis, we assume both α1 and α2 to be 1 in this subsection, and the sensitivity analysis of the market

parameters will be numerically presented in Section 6 . Firstly, we investigate the impact of commission rate ηt , and obtain

Proposition 1 . 

Proposition 1. With the increase of commission rate ηt , the numbers of passengers and drivers will both increase or decrease. 

Proof. We separately derive partial derivatives of the passenger’s disutility μt and the driver’s utility νt with respect to

commission rate ηt to explore the impacts of ηt on market participants’ utility or disutility. Recall Eqs. (4) (6) –(8) , (11) –(13) ,

we have 

∂ μt 

∂ ηt 
= 

−F̄ t βδ T v c · ∂w 

p 
t 

∂N v c t 

ν2 
t − φθβδT v c t Q t · ∂w 

p 
t 

∂N v c t 

∂w 

v c 
t 

∂N p t 

∂ νt 

∂ ηt 
= 

−ν2 
t F̄ t 

ν2 
t − φθβδT v c t Q t · ∂w 

p 
t 

∂N v c t 

∂w 

v c 
t 

∂N p t 

The denominators of the two partial derivatives are the same, but their numerators have opposite signs, because

Eq. (7) indicates 
∂w 

p 
t 

∂N v c t 
< 0 . Therefore, one of the two partial derivatives is positive, while the other is negative. In one case,

that is, ∂ μt 
∂ ηt 

> 0 and 

∂ νt 
∂ ηt 

< 0 , if commission rate ηt increases, then the passenger’s disutility increases, while the driver’s ex-

pected utility decreases. Thus, both numbers of passengers and drivers in the market will decrease. In the other case, that

is, ∂ μt 
∂ ηt 

〈 0 and 

∂ νt 
∂ ηt 

〉 0 , if commission rate ηt increases, then more passengers and drivers are willing to enter the market, and

both of their numbers will increase. �

Secondly, we investigate the impact of dynamic pricing multiplier λt , and obtain Proposition 2 . 

Proposition 2. –

Case 1. Given ∂ μt 
∂ ηt 

> 0 and ∂ νt 
∂ ηt 

< 0 , if ∂ μt 
∂ λt 

< 0 , then ∂ νt 
∂ λt 

> 0 , conversely, the relationship does not necessarily hold; 

Case 2. Given ∂ μt 
∂ ηt 

< 0 and ∂ νt 
∂ ηt 

> 0 , if ∂ μt 
∂ λt 

> 0 , then ∂ νt 
∂ λt 

< 0 , conversely, the relationship does not necessarily hold. 

Proof. Firstly, we separately derive the partial derivative of passenger’s disutility μt and car driver’s utility νt with respect

to dynamic pricing multiplier λt to explore the impacts of λt on market participants’ utility or disutility. Recall Eqs. (4 , 6-8 ,

11-13 ), we have 

∂ μt 

∂ λt 
= 

F t 

[ 
ν2 

t + ( 1 − ηt ) βδT v c t · ∂w 

p 
t 

∂N v c t 

] 
ν2 

t − φθβδT v c t Q t · ∂w 

p 
t 

∂N v c t 

∂w 

v c 
t 

∂N p t 

∂ νt 

∂ λt 
= 

F t ν2 
t 

(
1 − ηt + φθQ t · ∂w 

v c 
t 

∂N p t 

)
ν2 

t − φθβδT v c t Q t · ∂w 

p 
t 

∂N v c t 

∂w 

v c 
t 

∂N p t 

Secondly, we prove Case 1 of Proposition 2 . Given 

∂ μt 
∂ ηt 

> 0 and 

∂ νt 
∂ ηt 

< 0 , we know that the denominator parts of those

two partial derivatives are always negative based on the proof for Proposition 1 . So ν2 
t − φθβδT v c t Q t · ∂w 

p 
t 

∂N v c t 

∂w 

v c 
t 

∂N 
p 
t 

> 0 , and

it can be simplified into 1 + βφ ∂ Q t 
∂ μt 

∂T v c t 
∂ νt 

∂w 

p 
t 

∂N v c t 

∂w 

v c 
t 

∂N 
p 
t 

> 0 , further, we obtain 

∂ μt 
∂ Q t 

∂ νt 
∂T v c t 

∂N v c t 

∂w 

p 
t 

∂N 
p 
t 

∂w 

v c 
t 

< −βφ. If ∂ μt 
∂ λt 

< 0 , then the nu-

merator of ∂ μt 
∂ λt 

is negative, i.e., ν2 
t + ( 1 − ηt ) βδT v c t · ∂w 

p 
t 

∂N v c t 
< 0 . Since 

∂T v c t 
∂ νt 

= 

δT v c t 

ν2 
t 

, we have 1 + ( 1 − ηt ) β
∂T v c t 
∂ νt 

∂w 

p 
t 

∂N v c t 
< 0 , then

−β
∂T v c t 
∂ νt 

∂w 

p 
t 

∂N v c t 
> 

1 
1 −ηt 

. Given that ∂ μt 
∂ Q t 

∂ νt 
∂T v c t 

∂N v c t 

∂w 

p 
t 

∂N 
p 
t 

∂w 

v c 
t 

< −βφ, we have ∂ μt 
∂ Q t 

∂ νt 
∂T v c t 

∂N v c t 

∂w 

p 
t 

∂N 
p 
t 

∂w 

v c 
t 

· ∂T v c t 
∂ νt 

∂w 

p 
t 

∂N v c t 
> −βφ

∂T v c t 
∂ νt 

∂w 

p 
t 

∂N v c t 
, so ∂ μt 

∂ Q t 

∂N 
p 
t 

∂w 

v c 
t 

> 

φ( −β
∂T v c t 
∂ νt 

∂w 

p 
t 

∂N v c t 
) > 

φ
1 −ηt 

. We know that ∂ μt 
∂ Q t 

∂N 
p 
t 

∂w 

v c 
t 

> 

φ
1 −ηt 

can be reformulated as 1 − ηt − φ ∂ Q t 
∂ μt 

∂w 

v c 
t 

∂N 
p 
t 

> 0 . As a result, the nu-

merator of ∂ νt 
∂ λt 

is positive, then 

∂ νt 
∂ λt 

> 0 . 

Finally, we prove Case 2 of Proposition 2 . Following the same logic used to prove Case 1 of Proposition 2 ,

given 

∂ μt 
∂ ηt 

< 0 and 

∂ νt 
∂ ηt 

> 0 , we have ∂ μt 
∂ Q t 

∂ νt 
∂T v c t 

∂N v c t 

∂w 

p 
t 

∂N 
p 
t 

∂w 

v c 
t 

> −βφ. If ∂ μt 
∂ λt 

> 0 , then ν2 
t + ( 1 − ηt ) βδT v c t · ∂w 

p 
t 

∂N v c t 
> 0 . Therefore,

1 + ( 1 − ηt ) β
∂T v c t 
∂ νt 

∂w 

p 
t 

∂N v c t 
> 0 , then −β

∂T v c t 
∂ νt 

∂w 

p 
t 

∂N v c t 
< 

1 
1 −ηt 

. Since ∂ μt 
∂ Q t 

∂ νt 
∂T v c t 

∂N v c t 

∂w 

p 

∂N 
p 
t 

∂w 

v c 
t 

> −βφ, we have ∂ μt 
∂ Q t 

∂ νt 
∂T v c t 

∂N v c t 

∂w 

p 

∂N 
p 
t 

∂w 

v c 
t 

· ∂T v c t 
∂ νt 

∂w 

p 
t 

∂N v c t 
<

t t 
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−βφ
∂T v c t 
∂ νt 

∂w 

p 
t 

∂N v c t 
, thus, ∂ μt 

∂ Q t 

∂N 
p 
t 

∂w 

v c 
t 

< φ( −β
∂T v c t 
∂ νt 

∂w 

p 
t 

∂N v c t 
) < 

φ
1 −ηt 

. We know that ∂ μt 
∂ Q t 

∂N 
p 
t 

∂w 

v c 
t 

< 

φ
1 −ηt 

can be reformulated as 1 − ηt −
φ ∂ Q t 

∂ μt 

∂w 

v c 
t 

∂N 
p 
t 

< 0 . As a result, the numerator of ∂ νt 
∂ λt 

is negative, then 

∂ νt 
∂ λt 

< 0 . �

These conclusions have practical value for the on-demand ride services platform. Proposition 1 implies that the numbers

of passengers and drivers will both increase or decrease under a higher commission rate ηt . Intuitively, fewer passengers

and drivers are willing to participate in the market when commission rate ηt increases. As a result, Case 1 in Proposition 2 is

more common for most cases in the real world. The conclusion, if ∂ μt 
∂ λt 

< 0 , then 

∂ νt 
∂ λt 

> 0 , is equivalent with that if ∂ νt 
∂ λt 

< 0 ,

then 

∂ μt 
∂ λt 

> 0 . These two findings are helpful when the platform aims to attract more passengers and drivers into the market

only by leveraging its ride-sourcing service’s price with a certain commission rate. On the one hand, if the platform considers

increasing its service’s price, it should pay more attention to passengers’ willingness to use its platform. Because the more

passengers are inclined to use the platform ( ∂ μt 
∂ λt 

< 0 ), the more drivers can be guaranteed to participate on the platform

( ∂ νt 
∂ λt 

> 0 ). On the other hand, if the platform considers decreasing its service’s price, then it should focus on the drivers’

willingness to provide services on it. This is because if the proportion of drivers who are willing to provide services on the

platform increases ( ∂ νt 
∂ λt 

< 0 ), passengers will correspondingly increase their willingness to use the platform ( ∂ μt 
∂ λt 

> 0 ). 

5. Optimization problem formulation 

5.1. Objective functions 

Given the dynamic and comprehensive supply/demand information, we can adjust the pricing strategies, i.e., decision

variables, to achieve different specific goals. Although there could be several different objectives for the on-demand ride

services market, different participants in the market will concentrate on different tar gets from their own perspectives. In

this paper, we consider two different objectives, i.e., platform revenue maximization, and social welfare maximization, from

the perspective of platform, and government regulators, respectively. 

For the ride-sourcing platform, the most crucial target is to maximize the platform revenue, which is calculated by

R t ( λt , ηt ) = F t m t ηt . In this case, the optimization problem for the platform is formulated as follows: 

max 
λ, η

K−1 ∑ 

s =0 

R s ·�t (16)

where vectors λ and η are two sequences of decision variables, i.e., [ λ�t , …, λ( K − 1) · �t ], and [ η�t , …, η( K − 1) · �t ]. 

Meanwhile, from the perspective of the government, it aims to maximize social welfare. Social welfare is the total benefit

available to the society from an economic transaction, which can be defined by Eq. (17) in this dynamic meeting model. 

S W t ( λt , ηt ) = C S t + P S t + R t − β�t 
(
N 

p 
t − m t 

)
− φ�t 

(
N 

v c 
t − m t 

)
where CS t is the consumer surplus defined by 

∫ m t 
0 

f −1 (z)d z − μt m t ; PS t is the producer surplus defined by νt m t −∫ m t 
0 

g −1 (z)d z; β�t( N 

p 
t − m t ) is the value of waiting time for unmatched passengers from t to t + �t ; φ�t( N 

v c 
t − m t ) is

the value of waiting time for unmatched vacant cars from t to t + �t . 

The optimization problem for the platform to maximize social welfare is given by 

max 
λ, η

K−1 ∑ 

s =0 

S W s ·�t (17)

The relationship among consumer surplus, producer surplus, and platform revenue in a market-clearing market with

equilibrium is illustrated in Fig. 3 . 

As mentioned before, the platform can leverage decision variables to achieve specific objectives. However, this process

is not easy because the change of decision variables has very complicated impacts on the market. As commission rate η
increases, the platform can get more money from a ride-sourcing order, which may elevate platform revenue. However, the

driver utility will decrease. Further, the vacant car arrival rate decreases will lead to an increase in the passenger waiting

time. 

As a consequence, there will be fewer passengers due to the rise in the consumer disutility, which will let the number of

ride-sourcing orders down and may lower platform revenue. In conclusion, when the platform aims to obtain more revenue

by leveraging commission rate η, there is a trade-off between one ride-sourcing order’s revenue and the number of ride-

sourcing orders. This trade-off becomes more complicated under different demand and supply situations. Also, the change of

dynamic pricing multiplier λ faces a similar trade-off issue. When we turn to the social welfare objective, the same difficulty

still exists. Consequently, the best strategy for the platform is to adapt the decision variables based on real-time demand

and supply situations. 
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Fig. 3. An illustration of consumer surplus, producer surplus, and platform revenue in a market-clearing market with equilibrium. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.2. Constraints 

Given certain decision variables, all of the state variables of dynamic vacant car-passenger meeting at every time interval

can be characterized by Eqs. (5) , (10) , and (15) . Therefore, these three equations are set as constraints of the optimiza-

tion problem. Also, another key participator of the market, i.e., drivers, mostly concern their income when they determine

whether to participate in the market, which is calculated by the total income F t m t ( 1 − ηt ) divided by the arrival rate of

drivers T v c t at time interval t . Thus, drivers’ profit should be guaranteed above a certain level. Furthermore, this acquirement

can be written as the following constraint: 

F t m t ( 1 − ηt ) 

T v c t 

≥ c, ∀ t (18) 

where c is the minimum wage rate for drivers. 

As shown in Fig. 2 , there are only two decision variables, i.e., dynamic pricing multiplier λt , and platform commission rate

ηt . When the platform leverages decision variables to achieve specific goals, the range of variables can be effectively adapted

to different operational scenarios. In other words, λt corresponds to time-varying surge pricing when λt ≥ 1 or incentives

for passengers when λt < 1; positive ηt corresponds to the commission rate for drivers, while negative ηt corresponds to

incentives for drivers. 

Considering the actual application, the fluctuation of decision variables should not be too frequent or intense. It is worth

to mention that, in actual operations, the platforms may restrict the fluctuation of surge pricing and wage. This is because

frequently changing the price and wage may make passengers and drivers uncomfortable. For example, when a passenger

opens the APP, the price shows $5, then when she/he presses the button to request an order, the price becomes $10, then

the passenger may be annoyed. Hence, we impose constraints (19) - (23) as the restriction over pricing strategies. Constraint

(19) states that the pricing decision variables only change every n time interval length (one decision epoch). That is, one day 

will be divided into K 
n decision epochs, and the decision variables should be constants in one decision epoch. Constraints

(20) –(21) restrict the fluctuation of dynamic pricing multiplier λt and platform commission rate ηt between two consecutive 

decision epochs within the range of [ − ε 1 , ε 2 ], and [ − ε 3 , ε 4 ], respectively. In addition, pricing decision variables are often

subject to certain restrictions enforced by city legislators in practice; therefore, we use constraints (22) –(23) to enforce two

lower limits λL , ηL and two upper limits λU , ηU , respectively. {
λk ·�t = λ( j ) 
ηk ·�t = η( j ) 

if ( j − 1 ) · n + 1 ≤ k ≤ j · n, j ∈ 

{ 

1 , . . . , 
K 

n 

} 

(19) 

−ε1 ≤ λ( j ) − λ( j − 1 ) ≤ ε2 , ∀ j ∈ 

{ 

1 , . . . , 
K 

n 

} 

(20) 

−ε3 ≤ η( j ) − η( j − 1 ) ≤ ε4 , ∀ j ∈ 

{ 

1 , . . . , 
K 

n 

} 

(21) 

λL ≤ λ( j ) ≤ λU , ∀ j ∈ 

{ 

1 , . . . , 
K 

n 

} 

(22) 

ηL ≤ η( j ) ≤ ηU , ∀ j ∈ 

{ 

1 , . . . , 
K 

n 

} 

(23) 

In conclusion, we summarize constraints (5) , (10) , (15) , and (18) –(23) for the optimization problem. 
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5.3. Solution algorithm 

The two optimization problems formulated in Section 5.1 and Section 5.2 are all sequential decision problems, which

means we can adopt a myopic optimization algorithm to solve them. For example, in this section, we try to maximize

the whole days’ platform revenue, and the optimization problem is shown in Eq. (24) . During every decision epoch, the

myopic optimization problem is to maximize the total platform revenue of the current decision epoch. Take one decision

epoch ( t + �t , t + n �t ) as an example, the objective function is the summation of platform revenue of n time intervals,

expressed by Eq. (24) . Since it is a finite time window problem, we can solve it by some traditional optimization algorithms,

such as the sequential least squares programming algorithm (SLSQP). 

max 
λt+�t ... λt+ n �t , ηt+�t ... ηt+ n �t 

n −1 ∑ 

s =0 

R ( t+ s ·�t ) (24)

For the non-myopic optimization problem, objective function (24) can be rewritten as (25) by using the notation of

dynamic programming. C t is the one-stage objective function and equals 
n −1 ∑ 

s =0 

R s ( λt+ s ·�t , ηt+ s ·�t ) . The state variables in every

decision epoch are remaining vacant cars N 

v c 
t and passengers N 

p 
t in the last time segment, and the exogenous information

includes the potential passenger demand rate and potential car supply rate. The state transition function is shown as follows:

max 
λ, η

K/n −1 ∑ 

i =0 

C i ·n ·�t (25)

N 

v c 
t+ n ·�t = N 

v c 
t + 

n ∑ 

s =1 

(
T v c t+ s ·�t − m t+ s ·�t 

)
�t (26)

N 

p 
t+ n ·�t 

= N 

p 
t + 

n ∑ 

s =1 

( Q t+ s ·�t − m t+ s ·�t ) �t (27)

This problem seems to be solvable at first glance because we can solve the problem by recursively computing the fol-

lowing Bellman’s optimality equation. 

V t 

(
N 

p 
t , N 

v c 
t 

)
= max 

λt+�t ... λt+ n ·�t , ηt+�t ... ηt+ n ·�t 

{ C t + E 
{

V t+ n ·�t 

(
N 

p 
t+ n ·�t 

, N 

v c 
t+ n ·�t 

)}
(28)

where V t ( N 

p 
t , N 

v c 
t ) is a value function that tells us the value of being in state ( N 

p 
t , N 

v c 
t ) , calculated by the summation of the

objective function C t and the reward value function V t+ n ·�t ( N 

p 
t+ n ·�t 

, N 

v c 
t+ n ·�t 

) of subsequent time segments. 

Nevertheless, the multi-period optimization problem’s state, exogeneity, and decision spaces may scale exponentially over

time due to the curse of dimensionality. Especially, some extreme states may occur in the real-world market. Therefore, we

cannot guarantee that the infinite sample paths over time are all attempted, and every possible state is visited to obtain

the best solution. Alternatively, we adopt the ADP algorithm to solve the problem, in which we use a suitably designed

value function approximation (VFA) V̄ t ( N 

p 
t , N 

v c 
t ) to approximate the future impact of the state ( N 

p 
t , N 

v c 
t ) . Inspired by Lei and

Ouyang (2017) , the VFA of this paper is designed as a separable piecewise linear function of state variables. The piecewise

linear function can provide a more stable approximation than a purely linear function and can be easily embedded into an

optimization model with a maximization objective that is solvable by existing solvers. More specifically, for each time inter-

val t , we use the summation of a set of one-dimensional functions V̄ 
t, N 

p 
t 
( N 

p 
t ) and V̄ t, N v c t 

( N 

v c 
t ) to approximate V t ( N 

p 
t , N 

v c 
t ) ,

where V̄ 
t, N 

p 
t 
( N 

p 
t ) and V̄ t, N v c t 

( N 

v c 
t ) are the piecewise linear functions of N 

p 
t and N 

v c 
t , respectively. These two functions are only

related to one of the two state variables separately as follows: 

V̄ t 

(
N 

p 
t , N 

v c 
t 

)
= V̄ t, N p t 

(
N 

p 
t 

)
+ V̄ t, N v c t 

(
N 

v c 
t 

)
(29)

To train the parameters of piecewise linear functions in the VFA, we simulate different states with the forwarding time

order and solve the following one-stage problem (34), where V̄ n −1 
t+ n ·�t 

is the latest VFA. By calculating the marginal value in-

formation of state variables ˆ v n t (i.e., the gradient of state variables at iteration n), we update the VFA parameters in different

decision epochs with n iterations. 

max 
λt+�t ... λt+ n ·�t , ηt+�t ... ηt+ n ·�t 

{ C t + V̄ 

n −1 
t+ n ·�t 

(
N 

p 
t+ n ·�t 

, N 

v c 
t+ n ·�t 

)} (30)

The VFA update process is designed as Eq. (31) , αn = 1 − 1/(2 n + 2) ∈ (0, 1) is the step size and set to be ascending

with the iteration time n to ensure a quick convergence. Noted that though Eq. (31) only updates the VFA value with the

current simulation status, the whole VFA will also automatically adapt to the updated value to ensure the continuity of the

piecewise linear function in the update process. The iteration algorithm used to update its VFA coefficients is illustrated in

Algorithm 1 . 

V̄ 

n 
t 

(
N 

p 
t , N 

v c 
t 

)
= 

{
αn −1 · V̄ 

n −1 
t 

(
N 

p 
t , N 

v c 
t 

)
+ 

(
1 − αn −1 

)
· ˆ v n t , f or current simulation status 

¯ n −1 
(

p v c 
) (31)
V t N t , N t , f or other status 
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Algorithm 1 ADP algorithm 

1 Set n = 0 , ∀ t, initialize VFA V̄ 0 t ( N 
p 
t , N 

v c 
t ) . 

2 For n = 0 to N do 

3 Sample endogenous variables Q t and T v c t for t = �t to K�t . 

4 For t = �t, n �t , 2 n �t ……, K �t do 

5 Solve simulation-based one-stage problem (30) using the latest VFA V̄ n −1 
t . 

6 Calculate the gradient ̂  v n t at iteration n . 

7 Update VFA V̄ n t ( N 
p 
t , N 

v c 
t ) based on Eq. (31). 

8 End for 

9 State transition using Eqs. (26-27). 

10 End for 

11 Output V̄ N t ( N 
p 
t , N 

v c 
t ) , ∀ t

Fig. 4. Matched orders per minute in Hangzhou, China (two-week mean). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. Numerical study 

In this section, we use real-world ride-sourcing order data from DiDi Chuxing in Hangzhou, China. The data were col-

lected in two weeks. The number of meeting passengers/vacant cars per minute is shown in Fig. 4 , in which the number

of matched orders during the extended morning peak (07:0 0-11:0 0) and evening peak (17:0 0-22:0 0) is significantly larger

than other time periods. 

6.1. Calibration of market parameters 

To estimate the actual potential supply and demand in the ride-sourcing market, we assume that both the potential

passenger demand rate Q t and potential car supply rate T v c t are proportional to the real-world average rates of passengers

and vacant cars at time t , respectively. After determining the numbers of potential passengers and cars, there are several

market parameters to be calibrated, i.e., meeting parameter A , α1 and α2 in the meeting function, flag-drop fee F o , price of

average service time ω, average passenger’s trip time l t , monetary value of passenger’s waiting time β and in-vehicle travel

time β0 , demand scaling parameter θ , value of operating expense for one car ϕ, and supply scaling parameter δ. To simplify

the calculation, we calibrate them with the following values based on the real-world situation. The market parameter setting

and calibration results are summarized in Table 1 . 

To verify the plausibility of our calibration results, we analyze the characteristics of the market under fixed price and

compare it with the real market data where there is no dynamic pricing and with a 20% commission rate. Fig. 5 shows

the time-varying meeting numbers per minute in the real-world market and simulated market with calibrated parameters.

The normalized root mean square error (NRMSE) and R-squared of two curves are 5.39% and 0.994, respectively, which

indicate that there is no significant difference between them. Therefore, we believe that the two markets share the same

characteristics in terms of the aforementioned meeting passengers or vacant cars. Furthermore, several state variables in the

simulated scenario are shown in Fig. 6 , i.e., number of waiting passengers, number of vacant cars, and meeting number. We

capture some market characteristics that can be observed in the real-world market. For example, the number of waiting

passengers is significantly higher than that of vacant cars in the morning and evening peaks, while there are more vacant

cars than waiting passengers during the remaining time periods. It should be mentioned that the meeting number per

minute is much smaller than those of waiting passengers and vacant cars, because they will keep waiting for several minutes

until being matched or leaving the market. In summary, the simulated market can adequately reflect the characteristics of
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Table 1 

Market parameter setting and calibration 

Parameter Value Unit Source 

A 10 - Estimated in this paper 

c 2 RMB Parameter setting of this paper 

F o 10 RMB DiDi in Hangzhou, China 

l t 0.3 h DiDi in Hangzhou, China 

�t 1 min Parameter setting of this paper 

α1 0.55 - Assumed in this paper, and inspired by Yang et al. (2014) and Shao et al. (2016) 

α2 0.55 - Assumed in this paper, and inspired by Yang et al. (2014) and Shao et al. (2016) 

β 30 RMB/h Referred to local average income level in Hangzhou, China 

β0 30 RMB/h Referred to local average income level in Hangzhou, China 

δ 30 RMB Estimated in this paper 

θ 0.04 1/RMB Estimated in this paper 

ϕ 60 RMB/h DiDi in Hangzhou, China 

ω 140 RMB/h DiDi in Hangzhou, China 

Note: - not applicable; RMB 100 = USD 14.4. 

Fig. 5. Comparison of meeting numbers per minute between the real-world market and simulated market. 

Fig. 6. State variables in the simulated market. 

 

 

 

 

 

 

 

the real-world market, and if there is no specific reference, the mentioned market refers to the simulated market based on

our dynamic vacant car-passenger meeting model in the following. 

After the calibration of the market parameters, we separately adjust dynamic pricing multiplier λ and platform commis-

sion rate η to simulate different fixed-price strategies. Fig. 7 shows that both social welfare and platform revenue of one

day vary with λ, given a constant η = 0.2. It also illustrates that with the increase of λ, both social welfare and platform

revenue rise first and then fall, which is consistent with the trade-off mentioned previously in Section 5.1 . When the values

of λ are around 0.9 and 1.1, social welfare and total revenue of one day reach their maximum, respectively, which indicates

that there is an appropriate balance between one ride-sourcing order’s revenue and the number of ride-sourcing orders. As
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Fig. 7. Effect of dynamic pricing multiplier λ on different objective functions ( η = 0.2) 

Fig. 8. Effect of platform commission rate η on different objective functions ( λ = 1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

shown in Fig. 8 , the social welfare and platform revenue also present a similar trend for the platform commission rate, and

the platform revenue reaches its maximum when η is around 0.25 under λ = 1. 

6.2. Comparison of different pricing strategies 

To test the impacts of different pricing strategies on the market performance, we introduce a two-hour experiment from

15:00 to 17:00, the objective of which is to maximize social welfare in Eq. (17) . In this experiment, one decision epoch

is 15 min (i.e., n = 15) and the constraints of the optimization problem are set by ε 1 , ε 2 = 0.5, 0.5, λL , λU = 0.6, 1.4,

ε3 , ε4 = 0.2, 0.2, ηL , ηU = 0, 0.4. Also, the experiment applies three pricing strategies, namely dynamic pricing based on

the ADP algorithm, dynamic pricing based on the myopic algorithm, and fixed price. As shown in Fig. 9 , the cumulative so-

cial welfare with dynamic pricing based on the myopic algorithm is 24.5% greater than that with a fixed price. Meanwhile,

the objective function value obtained by the ADP algorithm increases by 26.2% compared with the result of the myopic al-

gorithm. Based on the results, we can observe that dynamic pricing significantly increases social welfare, while the effect of

the ADP algorithm is much better than the myopic algorithm. As shown in Fig. 9 (a) and (b), the social welfare of dynamic

pricing (ADP) is lower than that of dynamic pricing (myopic) in the first and third decision epochs. However, in the remain-

ing decision epochs, social welfare with dynamic pricing (ADP) performs more steadily and catches up with the one with

dynamic pricing (myopic) after 16:00. Apparently, at the end of the experiment, the objective function (i.e., cumulative social

welfare) with dynamic pricing (ADP) is much better than that of dynamic pricing (myopic). This is because, in several deci-

sion epochs (e.g., the third epoch), the ADP algorithm values the state variables’ impact on the future more than the current

decision epoch’s social welfare based on the latest VFA. After several repetitive experiments, we find that dynamic pricing

can evidently improve the corresponding optimization objective function, and the ADP algorithm always performs better
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Fig. 9. Optimization results of the ADP dynamic pricing, myopic dynamic pricing, and fixed price (Objective: Social welfare). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

than the myopic algorithm for objective functions (16) and (17) , and the extent of increase depends on the demand/supply

situation and selected objective functions. Therefore, we focus on the ADP algorithm to solve the multi-period optimization

problem under dynamic pricing scenarios in the following experiments. 

6.3. Analysis of different objective functions 

This section studies the impacts of different objective functions under the dynamic pricing scenarios. The two scenarios

with objective functions (16) and (17) , i.e., platform revenue maximization and social welfare maximization, are separately

considered in these experiments, and the constraints of the optimization problems remain the same as Section 6.2 . The

optimal results and corresponding decision variables obtained by the ADP algorithm are shown in Fig. 10 , indicating the

change of platform revenue and social welfare under two scenarios. Fig. 11 illustrates the decision variables under differ-

ent dynamic optimization scenarios. The results show that the platform tends to raise dynamic pricing multiplier λ and

platform commission rate η when it chooses to optimize platform revenue. Therefore, the platform revenue keeps higher

in such circumstances. In contrast, social welfare under this scenario is worse than the other scenario. For this reason, al-

though revenue maximization is the most beneficial strategy for commercial platforms, this strategy may be harmful to

social welfare. If the objective function is set as social welfare, the platform will slightly reduce its price and keep η close

to zero. As shown in Fig. 10 (a), this strategy harms the platform revenue, which is far below the other scenario. The results

also illustrate that only maximizing social welfare is not a sustainable development strategy for commercial platforms. This

conclusion is reasonable due to the full flexibility of passengers and drivers, and consistent with previous research (e.g.,

Zha et al., 2016 ). 

As shown in Fig. 12 , the market with social welfare maximization generates a larger meeting number than the platform

revenue maximization scenario, while it leads to a significant imbalance between supply and demand, as well as fluctuations

in the number of waiting passengers in the market. This is because the platform reduces its price to maximize social welfare,

which stimulates many passengers to use the ride-sourcing platform. Meanwhile, the lower price for the trips will cause

drivers to be unwilling to provide services. However, due to the reduced platform commission rate and saved vacant cars’
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Fig. 10. Objective functions (platform revenue and social welfare) under different dynamic optimization scenarios. 

Fig. 11. Decision variables under different dynamic optimization scenarios. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

waiting time, there are still a number of drivers entering the market. Therefore, the numbers of waiting vacant cars under

the two scenarios in Fig. 12 (c) are comparable with each other. The result also shows that passengers are more vulnerable

to dynamic optimization strategy’s stimulus. 

In summary, maximizing one objective function will make various impacts on market performance. For instance, max-

imizing revenue is beneficial for commercial platforms but may be harmful to the average income of drivers and social

welfare. Also, maximizing social welfare is the most balanced strategy for passengers, drivers, and society, while the plat-

form will become a non-profit platform in this circumstance. 

6.4. Sensitivity analysis 

This section explores the impacts of the optimization constraints and ride-sourcing market parameters. The first part

of the optimization constraints includes the decision variable step sizes (constraints 20-21) and lower/upper bounds (con-

straints 22-23). Among them, ε 1 , ε 2 , ε 3 , ε 4 have specific practical meanings, which represent the maximum acceptance of

fluctuations in the trip price and platform commission rate for passengers and drivers, respectively. Therefore, these two

constraints are usually decided by the platform. Under the dynamic pricing scenarios, on the one hand, the larger the val-

ues of ε 1 , ε 2 , ε 3 , ε 4 , the larger the decision space for each optimization process, which may lead to a better result and also

make the optimization program not being able to find the optimal solution due to the larger space. On the other hand,

lower/upper bounds (i.e., λL , λU , ηL , ηU ), which are usually controlled by both the platform and government, directly deter-

mine the optimization results. 

The three dynamic pricing experiments with different step sizes of the decision variables are shown in Fig. 13 , more

specifically, decision variables in Fig. 13 (a) and (b), and objective function in Fig. 13 (c). In these three experiments, the

objective function is set as the cumulative social welfare. As shown in Fig. 13 (c), when the step sizes of the decision variables
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Fig. 12. State variables under different dynamic optimization scenarios. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

are set the largest, i.e., ε 1 , ε 2 = 0.5, ε 3 , ε 4 = 0.2, the optimization result is not so good as the other two experiments, both of

which almost generate the same result. This phenomenon can be explained that the sequential decision problem still cannot

be perfectly solved, even when ADP is adopted. However, the power of ADP can be observed when the decision variables

show the same trend, as well as the same optimization result in the other two different scenarios. 

Fig. 13 (d) demonstrates the objective function obtained by the myopic algorithm. Compared with the results of the ADP

algorithm in Fig. 13 (c), all the three objective functions (myopic) are smaller than the corresponding objective functions

(ADP), which once again demonstrates that ADP can significantly increase the objective function compared with the myopic

algorithm. Meanwhile, among the three curves in Fig. 13 (d), the curve with the smallest values of ε 1 , ε 2 , ε 3 , ε 4 has the

highest objective function, then followed by the curves with moderate values and the largest values of ε 1 , ε 2 , ε 3 , ε 4 . In the

myopic optimization algorithm, the larger decision space means the broader fluctuation range of the decision variables,

which may make negative effects on the global optimization result due to the myopic characteristics. In summary, when

ε 1 , ε 2 , ε 3 , ε 4 are relatively small, the result of ADP is not sensitive to them, but when they are relatively large, the optimal

solution of ADP will decrease slightly (still far superior to the solution of the myopic algorithm). 

Next, we test the dynamic pricing scenarios with different lower/upper bounds of the decision variables. Each subfigure

in Fig. 14 consists of three pairs of ηL , ηU (x-axis), two pairs of λL , λU (y-axis), and the objective function (z-axis), which is

set as the platform revenue in Fig. 14 (a) and social welfare in Fig. 14 (b). The sensitivity of different objective functions varies

with different lower/upper bounds of the decision variables. Platform revenue, as the objective function, is more sensitive

to λL , λU . As a result, when the feasible range of surge pricing becomes larger or the passenger’s incentives are involved,

the platform will be more profitable when the optimization goal is platform revenue maximization. It’s true that ηL , ηU do

influence the optimization performance, however, the influence keeps relatively small (within 4%) if ηL , ηU fluctuate in a

reasonable interval based on our numerical results. 

Meanwhile, when it comes to social welfare, the objective function’s sensitivity to the lower/upper bounds get reversed.

Optimized social welfare is more sensitive to ηL , ηU , while only small fluctuations (within 1%) occur as λL , λU change. That

is to say, the enlargement of the commission rate and the introduction of driver incentives can increase social welfare when

it is set as the objective function. In summary, the relationship between the optimal objective function and lower/upper
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Fig. 13. Dynamic optimization strategies with different step sizes of decision variables (Objective: Social welfare). 

Fig. 14. Dynamic optimization strategies with different decision variables’ lower/upper limits. 

 

 

 

 

 

 

bounds of the decision variables varies among different types of objective functions, and generally, the broader range of

surge pricing and commission rate and the introduction of incentives are helpful to achieve better optimization results. 

The second part of the sensitivity analysis is on the ride-sourcing market parameters. Among all parameters of the ride-

sourcing market, α1 and α2 in the meeting function are the key ones, because they characterize the vacant car-passenger

meeting efficiency in the ride-sourcing market. Therefore, we consider four pairs of ( α1 , α2 ), i.e., (0.45, 0.45), (0.5, 0.5), (0.55,

0.55), and (1, 1), corresponding to decreasing, constant, slight increasing, and largely increasing returns to scale, respectively.

To keep the matching function reasonable in the ride-sourcing market with different ( α , α ), that is, to maintain the sim-
1 2 
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Table 2 

Improved percentage of the objective function by dynamic optimization strategies in 

different markets 

Ride-sourcing markets (0.45, 0.45) (0.5, 0.5) (0.55, 0.55) (1, 1) 

Objective: Platform revenue 78.6% 73.5% 68.9% 47.7% 

Objective: Social welfare 57.3% 59.1% 57.2% 62.2% 

Fig. 15. Social welfare and state variables in a special event under dynamic optimization strategies (Objective: Social welfare). 

 

 

 

 

 

 

 

 

 

 

 

 

 

ulated matching number close to the real matching number, we adjusted some other market parameters accordingly. As a

result, we focus on how much dynamic optimization strategies based on ADP can improve the objective function compared

with the fixed price in ride-sourcing markets with different matching efficiencies. Table 2 shows the improved percentage

of the objective function by dynamic optimization strategies than the fixed-price strategy in markets with different α1 and

α2 . Obviously, dynamic optimization strategies based on ADP can significantly improve the objective function in different

market scenarios. When the platform aims to maximize revenue, its performance is the best in the market with decreasing

returns to scale and becomes worse in the market with increasing returns to scale. As for the other objective (i.e., social

welfare maximization), ADP’s performance slightly fluctuates when the ride-sourcing market parameters change. 

6.5. Special event experiment 

It should be mentioned that the supply and demand data used in this paper are averaged from two-week real-world

datasets, which thoroughly describe daily morning/evening peaks and off-peak time periods. However, there will be no

visible demand or supply (e.g., a special event) according to the aggregate data. To evaluate the dynamic pricing strategy’s

effectiveness under a tremendous arrival rate of passengers, we double the potential passenger demand from 16:10 to 16:40,

then simulate the two-hour market, in which the special event is included. There are four scenarios in this experiment,

namely, fixed price without/with the special event, and dynamic pricing aiming to maximize social welfare without/with

the special event. The results are shown in Fig. 15 . 
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Fig. 16. Decision variables in a special event under dynamic optimization strategies (Objective: Social welfare). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Observing fixed-price lines without/with the special event (solid black line and dashed dot green line) in Fig. 15 (c),

we find the impact of current demand on waiting passengers. Under fixed-price scenarios, it should be noted that the

number of waiting passengers in the special event is not obtained from the one without the special event according

to the aforementioned increased proportion, i.e., doubled potential passenger demand from 16:10 to 16:40. The num-

ber is also influenced by two aspects, positively and negatively. On the one hand, more waiting passengers mean the

increase of the driver utility, and as more vacant cars enter the market, there will be more passengers attracted. On

the other hand, more waiting passengers will also lead to more vacant cars being matched. As a result, there will

be fewer vacant cars in the market, i.e., larger passenger’s disutility and further fewer passengers in the market. Fi-

nally, under the influence of these two effects, the number of waiting passengers in the special event will increase

based on the market status. This phenomenon is also reflected in Fig. 15 (c), and the solid black line (fixed-price sce-

nario with the special event) is not twice the black dashed line (fixed-price scenario without the special event) from

16:10 to 16:40. 

As for the dynamic pricing strategy, we compare it with the fixed-price strategy when the special event occurs. From the

results illustrated in Fig. 15 (a) and (b), social welfare and the meeting number under the dynamic pricing strategy are always

better than those under the fixed-price strategy during regular time periods. Due to the existence of the special event,

dynamic pricing even adopts its strategy before the special event to gain more social welfare. During the special event, both

social welfare and the meeting number under the dynamic pricing strategy are much better than those during the regular

time periods. The number of waiting passengers and vacant cars under the dynamic pricing strategy is influenced more

significantly by the dynamic pricing strategy compared to the fixed-price scenario, achieving higher social welfare, which

indicates the dynamic pricing strategy outperforms the fixed-price strategy. 

In addition, the decision variables λ∗
t and η∗

t of the optimal result are demonstrated in Fig. 16 (a) and (b), respectively. The

red dotted line and blue dashed line correspond to dynamic pricing scenarios with/without the special event, respectively,

while the solid black line is the fixed-price scenario without/with the special event. We can observe that dynamic pricing

multiplier λ∗
t is smaller than the fixed-price scenario ( λ = 1), and platform commission rate η∗

t remains zero during the

most time, denoted by the blue dashed line in Fig. 16 (b). This is because the platform deliberately attracts more passengers

and drivers according to the supply and demand situation, to achieve its goal, i.e., social welfare maximization. When the

special event occurs, dynamic pricing multiplier λ∗
t increases from 16:00 to 16:30, and platform commission rate η∗

t remains

zero. 

7. Conclusions 

This paper studies several dynamic optimization strategies for the on-demand ride services platform to achieve differ-

ent targets, in which surge pricing, commission rate, and incentives for passengers and drivers are simultaneously con-

sidered. To test the strategies’ instant impact on the ride-sourcing market, we propose a dynamic vacant car-passenger

meeting model to characterize the influence of optimization strategies on the arrival rate of passengers/vacant cars, the

influence of arrival rate of passengers/vacant cars on the waiting numbers of passengers/vacant cars, and the influence

of waiting numbers of passengers/vacant cars on the meeting number of passengers/vacant cars. Based on the proposed

meeting model, we formulate different optimization problems, i.e., platform revenue maximization and social welfare max-

imization, from the perspectives of platform and government respectively. A non-myopic ADP algorithm is developed to

solve the above sequential decision problems, and a numerical study based on real-world data from an on-demand ride

services platform in Hangzhou, China, is conducted to test the optimization strategies and the algorithm. The results show

that the ADP-based strategy can achieve better-optimized performance over the myopic strategy, and the platform’s oper-
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ation target has a significant influence on the structure of the ride-sourcing market. Platform revenue maximization will

attract more drivers to provide services, while social welfare maximization will stimulate more passengers to use the

platform, in which circumstance the platform almost becomes a non-profit platform. Further, we find that the broader

range of surge pricing and commission rate and the introduction of incentives are beneficial to achieve better optimization

results. 

It should be mentioned that there are still some further research issues on the dynamic optimization strategies for on-

demand ride services. For instance, all optimization strategies are determined by the origins of the passengers. However,

their destinations are also an essential consideration because the cars need to run empty until meeting the next passengers

after serving them. If their destinations’ supply is far out of demand, this factor will become even more critical. All these

research topics are worthy of investigation in future research. 
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Appendix A. Notations 

For the convenience of readers, Table A1 lists notations frequently used in the paper. 
Table A1 

Mathematical notations 

Notation Definition 

A Meeting parameter 

c Minimum wage rate for drivers 

C t One-stage objective function at time interval t 

CM t Cumulative meeting number of passengers/vacant cars by time interval t 

CQ t Cumulative arrival number of passengers by time interval t 

CS t Consumer surplus at time interval t 

CT v c t Cumulative arrival number of vacant cars by time interval t 

E d Price elasticity of demand 

E s Price elasticity of supply 

f Demand function 

F o Flag-drop fee 

F t Travel time-based charge at time interval t 

F t Average trip fare at time interval t 

g Supply function 

K Total number of time intervals 

l t Average passenger’s trip time at time interval t 

m t Meeting rate or departure rate at time interval t 

M Meeting function 

n Time interval length that decision variables change 

N v c t Waiting number of vacant cars at time interval t 

N p t Waiting number of passengers at time interval t 

PS t Producer surplus at time interval t 

Q t Arrival rate of passengers at time interval t 

( continued on next page ) 
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Table A1 ( continued ) 

Notation Definition 

Q t Potential passenger demand rate at time interval t 

R t Platform revenue at time interval t 

SW Social welfare 

�t Time interval length 

T v c t Arrival rate of vacant cars at time interval t 

T v c t Potential vacant car supply rate at time interval t 

V t Value function at time interval t 

V̄ t Value function approximation at time interval t 

V̄ n t Value function approximation of iteration n at time interval t 

V̄ t, N p t 
Value function approximation in terms of N p t at time interval t 

V̄ t, N v c t 
Value function approximation in terms of N v c t at time interval t 

w 

p 
t Passenger’s waiting time at time interval t 

w 

v c 
t Vacant car’s waiting time at time interval t 

α1 , α2 Elasticities of meeting rate at time interval t 

αn Learning parameter of VFA in iteration n 

β Monetary value of waiting time 

β0 Monetary value of in-vehicle travel time 

δ Supply scaling parameter 

ε0 Driver’s opportunity cost 

ε 1 , ε 2 Fluctuation bounds of λt 

ε 3 , ε 4 Fluctuation bounds of ηt 

ηt Dynamic commission rate at time interval t 

η∗
t Optimal dynamic commission rate at time interval t 

ηL , ηU Lower and upper limits of ηt 

θ Demand scaling parameter 

λt Dynamic pricing multiplier at time interval t 

λ∗
t Optimal dynamic pricing multiplier at time interval t 

λL , λU Lower and upper limits of λt 

μt Passenger’s disutility at time interval t 

ν t Driver’s expected utility at time interval t 

ϕ Value of operating expense for one car 

ω Unit price of average service time 
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