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Abstract— Ride-sourcing services are becoming an increasingly
popular transportation mode in cities all over the world. With
real-time information from both drivers and passengers, the ride-
sourcing platform can reduce matching frictions and improve
efficiencies by surge pricing, optimal vehicle-trip assignment,
and proactive ridesplitting strategies. An important foundation
of these strategies is the short-term supply-demand forecasting.
In this paper, we tackle the problem of predicting the short-
term supply-demand gap of ride-sourcing services. In contrast to
the previous studies that partitioned a city area into numerous
square lattices, we partition the city area into various regular
hexagon lattices, which is motivated by the fact that hexago-
nal segmentation has an unambiguous neighborhood definition,
smaller edge-to-area ratio, and isotropy. To capture the spatio-
temporal characteristics in a hexagonal manner, we propose three
hexagon-based convolutional neural networks (H-CNN), both the
input and output of which are numerous local hexagon maps.
Moreover, a hexagon-based ensemble mechanism is developed to
enhance the prediction performance. Validated by a 3-week real-
world ride-sourcing dataset in Guangzhou, China, the H-CNN
models are found to significantly outperform the benchmark
algorithms in terms of accuracy and robustness. Our approaches
can be further extended to a broad range of spatio-temporal
forecasting problems in the domain of shared mobility and urban
computing.

Index Terms— Short-term supply-demand forecasting, deep
learning (DL), hexagon-based convolutional neural network
(H-CNN), on-demand ride service, ride-sourcing service.
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I. INTRODUCTION

W ITH the boom of the mobile internet, the ride-sourcing
service has been reshaping the traditional taxi mar-

ket and greatly affecting commuters’ travel mode choices.
Compared to the traditional taxi service, the on-demand ride-
sourcing service is generally more convenient, efficient, and
comfortable. The reasons are mainly due to two aspects.
Firstly, the number of taxis is bounded by the licenses issued,
while the operating platform can design economic incentives to
attract private car owners to register as full-time/part-time ride
service providers, thus each private car owner can be a poten-
tial ride-sourcing driver. As a result, the car-hailing supply can
be greatly improved, which forces the drivers to provide high-
quality services and in turn attracts more travelers to select
ride-sourcing services. Secondly, with the help of big data and
emerging technologies, the ride-sourcing platforms (e.g., Didi,
Uber, and Lyft) can reduce the matching friction by accurate
supply-demand forecasting, optimal matching strategies, and
efficient surge pricing. By accurately predicting the numbers
of passengers and idle drivers for each zone in the following
few minutes, the platform can dispatch/incentivize drivers to
move from cool zones (where supply is greater than demand)
to hot zones (where supply is less than demand) to reduce any
zonal supply-demand disequilibrium.

Although there have been fruitful studies on predicting
taxi/ride-sourcing passenger demand [1]–[3], only a few stud-
ies (e.g., [4]) considered both the demand and supply, and
investigated the prediction of the supply-demand gap. Predict-
ing the demand-supply gap is more challenging than merely
predicting demand, due to the irregularities and strong local
spatial correlations of the demand-supply gaps:

1) Irregularities: Passenger demand (requesting orders) has
strong periodicity, since users’ travel demand in each zone
follows and approximately repeats a certain pattern every
day. Even simple historical information can well estimate
the passenger demand in the next time interval. However,
the supply-demand gap (defined in Section III, Definition 1)
is more mutable and irregular, since it is not only determined
by the passenger demand but is also governed by vacant cars’
movements that do not have strong and explicit day-to-day
patterns in most cases. To support our arguments, we illustrate
one-week trends of the demand and the supply-demand gap
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Fig. 1. One-week trends of demand and the supply-demand gap of two zones
in Guangzhou, China. (a) Residential zone. (b) Business zone.

in one residential zone (zone 22 in Fig.1) and one business
zone (zone 77 in Fig. 1) in Guangzhou, China, which are
regular hexagons with a side length of around 660 meters over
a time interval of 30 minutes. It can be clearly observed that
both zones have regular passenger demand trends in each day.
However, the variance of the supply-demand gap is drastic: the
supply-demand gap in some time intervals in some days rises
sharply to a certain level which is not commonly observed in
the previous days.

2) Local Spatial Correlations: The supply-demand gap has
stronger local spatial correlations than demand mainly due to
the vacant cars’ movements. The trip origins of commuters
are usually fixed or within a small area (if passengers can-
not obtain responses from ride-sourcing cars in a particular
zone, they prefer to wait for a longer time, resend ride
requests, or switch to other transportation smodes, but usually
have a small probability to move to neighboring zones), thus
the passenger demand in one zone has limited effects on its
neighboring zones. However, vacant cars can move continu-
ously and quickly from one zone to another; the requesting
orders in one zone may be satisfied by the idle drivers from
the neighboring zones.

The spatial correlations are commonly observed in a broad
range of problems, including crowd flow prediction, travel time
estimation, etc. The most common technique utilized for cap-
turing spatial correlations is the convolutional neural network
(CNN) [5], which is a deep learning approach with excellent
performance in image recognition. Previous studies usually
split the whole city into numerous squares by horizontal and
vertical cut-off lines, and the labels/features of the squares
were further placed in matrices. Then by feeding the historical
matrices into convolutional layers, pooling layers, and activa-
tion layers of the CNN, one can predict the matrix in the
next time interval. However, the simple square-like partition
approach needs further assessment and discussion. Researchers
(e.g., [6]) found that hexagons had several advantages over
squares, including an unambiguous definition of the nearest
neighborhood, smaller edge-to-area ratio, and more isotropic
properties. The advantages of hexagons on region partition are
further discussed in Section II.

Inspired by these advantages, many organizations started
using hexagons as calculation units in their systems. For exam-
ple, the dataset of the Environmental Mapping and Assessment
Project (EMAP) identifies nationwide locations at 27-km inter-

vals in the U.S. based on 12,600 regular hexagons [7]. Didi
Chuxing (www.didichuxing.com/en), the largest ride-sourcing
company in China, partitions each city area into numerous
regular hexagons, based on which the supply-demand fore-
casting, hexagon-based subsidy, surge pricing, and dynamic
dispatching are implemented. While a broad range of studies
use square-like CNN in the domain of urban computing [8],
[9], few studies have considered how to efficiently implement
CNN in the hexagon-based system.

To incorporate spatio-temporal forecasting and hexagon-
based systems, this paper proposes three versions of hexagon-
based convolutional neural networks (H-CNN) and implements
them in predicting the supply-demand gap of ride-sourcing
services. In addition, we combine the local map-to-map predic-
tion and a hexagon-based ensemble mechanism to strengthen
the predictive performance. By well capturing the local spatial
characteristics of both real-time and historical features (e.g.,
the number of requests, total vacant hours of the ride-sourcing
cars, weather states, and traffic conditions), the proposed mod-
els significantly outperform benchmark algorithms, including
XGBoost and multi-layer perception, based on a real-world
ride-sourcing dataset. The methodological contributions of this
paper are summarized as follows:

3) We Design Three H-CNNs That Are Compatible With
the Standard Deep Learning Packages (e.g., TensorFlow):
The back-propagation algorithm of deep learning is based
on matrix transformation, which determines that the models
should have square or tensor as their input/output. Thus,
an intuitive way to design a hexagon-based CNN is to
map hexagons to squares/tensors with few loss of the topol-
ogy information. We thus build three coordinates for the
hexagon system and generate three corresponding mapping
functions, i.e., square-mapping, parity-mapping, and cube-
mapping, which map the hexagons to squares/tensors. The
mapping functions are embedded in the top layers of the
architecture, followed by 2-D/3-D convolutional layers, batch-
normalization layers, and activation layers.

4) We Devise a Framework Which Combines the Local
Map-to-Map Prediction With Hexagon-Based Ensemble Mech-
anism: The framework provides valuable insights into spatio-
temporal data mining in urban computing. Previous studies
generally use features in a global city map as input and
labels in a global city map as output. However, this kind of
design requires long historical sequences of samples and faces
the problem of feature dimensionality exploration, especially
in the case where the city range is vast. Our framework
can significantly enrich the sample size and reduce feature
dimensionality (see Section V. D).

5) We Well Define the Problem, Extract Proper Features,
and Verify the Proposed Framework With Real-World Data:
A total of 384 features are extracted and divided into 47 groups
by categories (supply, demand, matching, weather, time, etc.)
and time intervals (last time interval, four-week average,
weekday/weekend average, etc.). Verified with the real-world
datasets provided by Didi, the three proposed H-CNNs inte-
grated with hexagon-based ensemble mechanisms outperform
the best benchmark algorithm by 6.5%, 8.0%, and 6.5%,
respectively, in terms of RMSE and achieve outstanding
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performance in predicting large values of the supply-demand
gap.

II. LITERATURE REVIEW

In this section, we focus on the literature in several related
fields, including the spatio-temporal forecasting approaches
in transportation and urban computing, the advantages of
hexagon-based spatial partitions, and the hexagon lattices/grids
utilized in various fields.

A. Spatio-Temporal Forecasting Problems in
Transportation/Urban Computing

The emergence of ride-sourcing services is having great
impact on commuters’ travel mode choice behavior and creat-
ing new occupation opportunities for private car owners. Many
interesting and challenging issues, such as surge pricing and
labor supply [10], ride-sharing behavior [11], and dynamic
vehicle assignment [12], have attracted researchers’ attention.
Understanding the short-term supply and demand conditions
is one of the most fundamental and important issues, based
on which proactive dynamic pricing schemes, dynamic trip-
vehicle assignments, and optimal carpooling algorithms can be
enhanced. Wang et al. [4] proposed a tailored deep residual
neural network, named DeepSD, for predicting the supply-
demand gap of ride-sourcing services in Hangzhou, China.
However, they only modeled temporal characteristics and
neglected the spatial connectivity. Ke et al. [13] forecast the
short-term passenger demand of ride-sourcing services with
a fusion Conv-LSTM (FCL-Net), which modeled the spatio-
temporal features with a combination of CNN and long short-
term memory (LSTM). However, the supply information was
not taken into account.

There are numerous spatio-temporal forecasting problems
which are similar to and insightful for our problem. Typical
problems are traffic flow/speed prediction [14], [15], passenger
flow prediction [16], network congestion evolution [17], high-
speed rail demand prediction [18], car-following behavior
analysis [19], etc. To model the temporal characteristics,
both traditional time-series models, such as the ARIMA fam-
ily [20], and prevailing deep learning approaches [21]–[24]
have been successfully implemented. It is reported that
researchers have been moving fast from classical statistical
models to neural networks in recent years, which might be
attributed to the boom in accessible big data and deep learning
techniques [25]. Besides, to characterize the spatial features,
one of the most efficient and effective approaches is CNN.
Due to its born superiority on modeling spatial features, CNN
is especially suitable for predictions with strong local con-
nections, such as city-wide inflow and outflow prediction [8].
Moreover, recent years have also witnessed the attempts [9],
[13] to incorporate CNN and LSTM/RNN in an end-to-end
deep learning architecture for better capturing the spatio-
temporal characteristics.

B. The Advantages and Implementations of Hexagons

There are only three regular polygons which can com-
pletely tessellate a plane without any overlapping or space:

hexagons, squares, and triangles [26]. Compared to squares
and triangles, hexagons have the following three main
advantages:

1) An Unambiguous Definition of the Nearest Neighbor-
hood: each regular hexagon has six symmetrically equivalent
side-connected hexagons [27]. On the other hand, each square
has two kinds of adjacent neighbors: orthogonal neighbors
which are side-connected and diagonal hexagons which are
corner-connected. A simple, precise, and symmetric defin-
ition of the nearest neighbors can better characterize the
connectivity in the hierarchical network topology. Especially,
in our problem, the movements among the zones of the
vehicles may influence the spatio-temporal distribution of the
supply-demand gap. Based on hexagon-based region partition,
the distance between one zone and its six neighboring zones
are equivalent, thus movements from this zone to its neighbors
can be more accurately characterized.

2) Smaller Edge-to-Area Ratio: hexagons are closer to
circles than squares. With unit area, the perimeter of a hexagon
(i.e., 3.722) is shorter than that of a square (i.e., 4), which
can reduce bias produced by edge effects. The edges of
hexagons are smoother, which can potentially better cap-
ture the inflow/outflow characteristics between adjacent zones
in the domain of transportation/urban computing. In spatio-
temporal supply-demand gap prediction, the inflow/outflow
of vehicles between every two adjacent zones has strong
impacts on the supply-demand gap distribution. Hence,
with a smaller edge-to-area ratio, the hexagon-based region
partition can better capture the inflow/outflow of the
zones.

3) More Isotropic: some studies (such as in simulation)
require the distance definition to be based on grids (grid-
based distance) instead of the actual straight-line distance [28].
Hexagons have more consistent and stable ratios of grid
distance to straight-line distance than squares. Since features in
various neighboring hexagons are fed into the proposed neural
network simultaneously in our problem, a good measurement
of the distance (using grid distance to infer actual straight-
line distance) can with no doubt better characterize complex
spatial structures.

In field implementation, triangles are rarely used since their
edge-to-area ratio is too large. Although square tessellation is
the most widely used polygon due to the easy implementation
in the orthogonal coordinates, hexagons are also applied in a
broad range of fields, including ecology, geography, computer
vision, etc. In ecology, some researchers used hexagons instead
of squares in field surveys of vegetation coverage and multi-
species plant competition experiments [29], and in studying
animals’ interactions with plants [30]. Birch et al. [6] stated
that hexagon grids had advantages on both the measurement
accuracy and visual effects. In computer vision, hexagons have
been used for image processing for over 40 years. Many pieces
of evidence indicate that hexagonal lattices have higher sam-
pling efficiencies and superior semantic representation [31].
Motivated by these advantages, a broad range of hexagon-
based applications are implemented, including the edge detec-
tion, feature extraction, and surface area estimation [32], etc.
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C. integrating Irregular Lattices With Neural Networks
An early study in the last decade [33] tried to combine

hexagon lattices with the cellular neural network (CeNN),
which is a parallel computing paradigm widely used for
image processing [34]. However, CeNN is different from the
prevailing back-propagation based neural networks, such as
the CNN and RNN, since the communication of CeNN is
only restricted to the neighboring units. In image processing,
CNN can be well adapted to deep structures, has more accurate
predictions, and is more widely used compared to CeNN [35].
Moreover, CNN is broadly embedded in most of the high-
efficient open-source software libraries, such as TensorFlow,
PyTorch, and Caffe, while CeNN is rarely implemented. One
of the limitations of CNNs is that the inputs and hidden
geometric structures of CNNs are restricted to matrices or
tensors.

A few recent studies made attempts to establish new
building modules to enhance the representative ability of
CNNs. Jifeng et al. [36] proposed deformable convolutional
networks, in which two novel modules, i.e., deformable convo-
lution and deformable POI pooling, were added to traditional
CNNs. In the proposed networks, the convolution kernels
were augmented with non-regular offsets, which enabled
the receptive fields to be adaptive. However, the inputs of
the deformable convolutional networks are still square-like
images, thus are not well adaptive to our problem in which
the inputs are hexagon maps. Sun et al. [37] designed several
“quasi-hexagonal” kernels to enhance the receptive field of
CNNs for better feature representations. Through extensive
experiments, the authors showed that the proposed method
integrated with ¡°quasi-hexagonal¡± kernels outperformed the
state-of-the-art methods in CIFAR-10/100 and ILSVRC-2012
datasets. However, the “quasi-hexagonal” kernels were used
to extract features from square-like images instead of hexagon
lattices. Hoogeboom et al. [38] investigated how to implement
convolution over hexagon lattices, by following the exist-
ing standard routines on CNN frameworks. They proposed
four candidate coordinate systems, i.e., axial, cube, double
width, and offsets, to transform hexagon lattices to matri-
ces or tensors. Through experiments on CIFAR-10 and AID
datasets, they showed that CNNs established over hexagon
lattices achieved higher predictive accuracy than CNNs estab-
lished over square lattices, given a fixed parameter budget.
Bruna et al. [39] proposed graph CNNs, which were gener-
alized versions of the traditional CNNs, with the help of the
graph Laplacian spectrum and hierarchical clustering. In con-
trast to traditional CNNs, the graph CNNs operated directly
on graphs and enable end-to-end learning on graphs with the
arbitrary shape and size. Extensive studies on the graph CNNs
were conducted by Henaff et al. [40], Duvenaud et al. [41],
etc.

Our paper is different from the previous studies in the
following aspects. Firstly, we provide explicit definitions for
the coordinate transformations and discuss the topology losses
and dimensionality of these transformations. The predictive
performances of H-CNNs integrated with different coordinate
transformations are also empirically tested and compared.
Secondly, the proposed H-CNNs have a strong application

background and tackle the real obstacles in the domain of
urban computing or transportation. In reality, it is hard for
companies or institutes to implement CNNs in spatio-temporal
prediction problems on a hexagon-based system.

III. PRELIMINARY

In this section, we present explicit definitions for the supply-
demand gap, region/time partition, supply-demand gap predic-
tion problem, and features utilized in this paper.

Firstly, we look at the rigorous definition of the supply-
demand gap. Passenger demand can be easily defined as the
number of requesting orders starting from one specific zone
in one specific time interval, while the number of vacant cars
(supply) changes continuously and spatially. Thus it is hard to
define how many vacant cars there will be within one specific
zone in one specific time interval as the supply. Therefore,
to find a suitable variable to coordinate supply and demand
and to reflect their relationship is challenging and important.
In this paper, we define the supply-demand gap in Definition 1.

Definition 1 (Supply-Demand Gap): the supply-demand
gap is represented by the total number of unsatisfied
requesting orders in each hexagon and each time interval.
One unsatisfied requesting order is counted if the request is
not dispatched to any ride-sourcing driver. The supply-demand
gap of hexagon i during time interval t of day d is denoted
as G(d,t)

i , where d ∈ D (the set of date), t ∈ T (the set of
time intervals in a day), i ∈ L (the set of partitioned zones),
and G(d,t)

i ∈ [0,+∞).
This definition has two main benefits. Firstly, the definition

is explicit, and the number of unsatisfied requesting orders can
be flexibly obtained from the platform and aggregated in zones
and time intervals. Secondly, predicting the spatial distribution
of unsatisfied requesting orders in the next few minutes closely
matches the requirement of the platform, which can further
dispatch/incentivize vacant cars to the zones with a large
number of unsatisfied orders.

Next, an explicit definition of the region-time partition
implemented in this paper is given as follows:

Definition 2 (Region-Time Partition): The investigated area
is partitioned into various regular hexagons based on the
hexagon discrete global grid system [31]. Each day is uni-
formly partitioned into several intervals. By calculating the
summation of the attributes of orders, drivers, weather condi-
tions, etc., the spatio-temporal features can be obtained.

A. Feature Categories

By considering the characteristics and data sources of the
features, we divide them into 7 main categories, i.e., supply-
related, demand-related, matching-related, weather-related,
time-related, location-related, and traffic condition-related fea-
tures as follows:

1) Supply-related features include the number of vacant
drivers which have passed the hexagon in one specific
time interval, the total waiting minutes of the vacant
drivers in each hexagon during each time interval,
the vacant drivers’ average cruising distance and time,
etc. These features can be easily calculated from the
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trajectory data of vacant ride-sourcing cars. All the
supply-related features in each spatio-temporal state are
placed in vector S(d,t)

i , where the meaning and domain
of d, t, i are defined in Definition 1.

2) Demand-related features are extracted from the order
record table and consist of the number of requesting
orders, the number of passengers who open the software
(they may determine not to request an order), the esti-
mated fare and time, etc. The vector of these features is
denoted as D(d,t)

i .
3) Matching-related features, also obtained from the order

record table, reveal the matching efficiency and match-
ing frictions between supply and demand. They include
the satisfied requesting orders (successfully matched),
unsatisfied requesting orders (not matched), the answer
rate, average answer duration (the average time between
passenger requested time and matched time), etc. The
vector of matching-related features is defined as M(d,t)

i .
4) Traffic condition-related features are comprised of the

number of inflow/outflow occupied ride-sourcing cars
(which reflects how many cars drop-off/pickup com-
muters in one hexagon during one specific time slot),
the average inflow/outflow speed and distance, etc.
Traffic condition-related features are encoded in vec-
tor TC(d,t)

i .
5) Location-related features simply include the latitude

and longitude of one hexagon and are represented by
vector L(d,t)

i .
6) Weather-related features contain weather states, precip-

itation, wind speed, and population. The weather states
(snowy, sunny, rainy, cloudy, and foggy) are encoded
with one-hot representation. The weather-related fea-
tures are grouped in vector W(d,t)

i .
7) Time-related features include the time-of-day and day-

of-week. In this paper, there are 48 time-of-day slots,
which are encoded by a 6-dimensional binary vector
(26 = 64 > 48). Day-of-week is encoded with one-
hot representation. The time-related features are jointly
presented by vector T(d,t)

i .

B. Time Stamps of Features

Our goal is to predict G(d,t)
i , thus all the features before

(d, t) can be used for training. However, training the mod-
els with the whole historical time sequence of features is
unaffordable and unnecessary. Zhang et al. [8] found that the
inflow/outflow of a crowd was affected by both the short-term
and long-term historical crowd flows. The short-term crowd
flow captured the tendency, while the long-term crowd flow
characterized the periodicity. In this paper, we extract features
from both short-term and long-term time slots.

Firstly, we extract four kinds of long-term features: the
last-four-week mean, weekdays/weekends mean, features on
the day of the last week, and features on the last day. For
each kind, the features of both time intervals t and t − 1 are
selected. To illustrate the design and notations, we take the
supply-related feature group as an example. Suppose we are
predicting G(d,t)

i , then we extract:

1) The last-four-week (LFW) means supply at time interval
t , that is, S(d,t)

i,L F W (0) = mean(S(τ,t)
i |τ∈{d−28,··· ,d−1}),

and at time interval t-1, we have S(d,t)
i,L F W (1) =

mean(S(τ,t−1)
i |τ∈{d−28,··· ,d−1}),.

2) Day-of-last-week (DOLW) supply at time interval t , that
is S(d,t)

i,DO LW (0) = S(d−7,t)
i , and at time interval t − 1,

we have S(d,t)
i,DO LW (1) = S(d−7,t−1)

i .

3) The last-day (LD) supply at time interval t is S(d,t)
i,L D(0) =

S(d−1,t)
i , and at time interval t − 1, we have S(d,t)

i,L D(1) =
S(d−1,t−1)

i .
4) The weekday/weekend (W) supply at time interval t

is S(d,t)
i,W (0) = mean(S(τ,t)

i |τ∈P(d)), and at time interval

t − 1, we have S(d,t)
i,W (1) = mean(S(τ,t−1)

i |τ∈P(d)), where
set P(d) includes all the historical weekdays/weekends
when d is a weekday/weekend.
Secondly, we extract three kinds of short-term features,
including features in time intervals t −1 and t −2 of the
current day, and the predicted features in time interval
t . Suppose we are predicting G(d,t)

i , then we have:
5) Supply at time interval t − 1, S(d,t−1)

i ; supply at time
interval t − 2, S(d,t−2)

i ; predicted supply at time interval
t , S(d,t)

i,predict = S(d,t−1)
i + S(d,t)

i,L F W (0) − S(d,t)
i,L F W (1).

IV. H-CNN FRAMEWORK

In this section, we first present an explicit definition of the
local hexagon map and then design three mapping functions
which transform local hexagon maps (represented as a vector)
into matrices or tensors. The transformed matrices and tensors
are further connected with multiple 2-D or 3-D convolutional
layers, batch-normalization layers, and activation functions in
the proposed deep learning architecture. To strengthen the
predictive performance, we design a hexagon-based ensemble
mechanism where the supply-demand gap of each hexagon is
estimated by the mean of the predicted values of all overlapped
local maps.

A. Local Hexagon Map

As a local hexagon map cannot be directly encoded into
a matrix like a local square map, we use vector Hn

(i0) to
represent a local hexagon map centralized at hexagon i0,
where n denotes the sequence index of neighboring layers. For
example, each hexagon has 6 one-circle surrounding hexagons,
and 12 two-circle surrounding hexagons, then the one-circle
surrounding local map (including the hexagon itself and the
one-circle surrounding hexagons) can be presented as vector
H 1

i0
= (i0, i1, · · · , i6), and the two-circle surrounding local

map (including the hexagon itself, the one-circle surrounding
and the two-circle surrounding hexagons) can be represented
as vector H 2

i0
= (i0, i1, · · · , i18). Fig. 2(a) illustrates the

relative positions of the hexagons in a two-circle surrounding
local map. The index of the hexagons of the nth circle always
starts from the left side (270◦) of the central hexagon, thus the
vector Hn

(i0) can explicitly represent the relative positions of
the hexagons of the n-circle surrounding local map centralized
at i0.
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Fig. 2. The indexes and coordinates of local hexagon maps. (a) Encoding of a
2-circle surrounding local map. (b) Square coordinates. (c) Parity coordinates.
(d) Cube coordinates.

B. Three Hexagon-Based Mapping Functions

By building three different coordinates, namely square-
coordinates, parity-coordinates and cube-coordinates, each
vector of the local hexagon map can be transformed into
matrices or tensors with different dimensions. Firstly, as shown
in Fig. 2(b), by rotating the vertical axis by 30◦, the square-
coordinates can be obtained, and each hexagon can be placed
in one intersection of the horizontal axis and the sloping
vertical axis. Secondly, as illustrated in Fig. 2(c), by building
parity-like coordinates (for a fixed vertical axis, the neigh-
bor hexagon is placed on the horizontal axis with either
odd or even numbers), each hexagon can be placed in one
intersection, although half of the intersections are not filled
with any hexagons. Thirdly, as demonstrated by Fig. 2(d),
three axes with 120◦ relative angles are established and thus
each hexagon can be placed in 3-D coordinates, namely cube-
coordinates.

We then denote Ms,n
i0

, Mp,n
i0

, Mc,n
i0

as the transformed matri-
ces of the n-circle surrounding local hexagon map centralized
at i0, i.e., Mn

i0
. For illustrative purposes, we present the

transformed matrices of one-circle surrounding local hexagon
map, i.e., Ms,1

i0
, Mp,1

i0
, Mc,1

i0
in Eqs. (1-3).

Ms,1
i0

=
⎡
⎣

i2 i3 ×
i1 i0 i4
× i6 i5

⎤
⎦ (1)

Mp,1
i0

=
⎡
⎣

× i2 × i3 ×
i1 × i0 × i4
× i6 × i5 ×

⎤
⎦ (2)

Mc,1
i0

=
⎡
⎣

⎡
⎣

× i6 ×
i5 × ×
× × ×

⎤
⎦,

⎡
⎣

× × i4
× i0 ×
i1 × ×

⎤
⎦,

⎡
⎣

× × ×
× × i3
× i2 ×

⎤
⎦

⎤
⎦ (3)

The three proposed coordinates lead to different topology
losses and require different dimensionality (i.e. space for data
storage). One of the advantages of hexagon lattices is that
the distance between the centers of any two adjacent hexagon
lattices is equivalent. Motivated by this fact, we evaluate the
topology loss with the distance among adjacent hexagons
in a local hexagon map. Let d(im, in) denote the distance
between the centers of two adjacent hexagons im and in

in a coordinate system (e.g. square, parity, or cube). Then
the average distance between the centers of each pair of
adjacent hexagons in one local hexagon map equals d =

1
2N

∑
im

∑
in∈A(im ) d(im, in), where A(im) means the set of

adjacent hexagons of hexagon im , and N refers to the num-
ber of edges connecting each pair of adjacent hexagons.
Note that each edge connecting two adjacent hexagons are
counted twice in

∑
im

∑
in∈A(im ) d(im, in), thus the denom-

inator is 2N instead of N . Next, we define the topology
ratio δ = d/min(d(im, in)), where min(d(im, in)) refers to
the minimum d(im, in) in the local hexagon map (for square
coordinate, the minimum is 1, for parity and cube coordinate,
the minimum is

√
2). Clearly, the topology ratio is not less than

1, and the smaller the topology ratio, the smaller topology
loss the transformation from local hexagon maps to matri-
ces/tensors. Particularly, when the topology ratio equals 1, all
the distances are equivalent and thus the coordinate system
does not lead to any topology losses after the transformation.

Calculating the topology ratio δ is equivalent to calculating∑
in∈A(im ) d(im, in) for an arbitrary hexagon i , due to the

fact that all the hexagons are structurally equivalent (with
neighboring hexagons in the same relative locations based on
the coordinates). Without loss of generality, we use hexagon
i0 in Eqs. (1-3) for an illustration. Clearly, hexagon i0 has
six neighboring hexagons i1, i2, i3, i4, i5, i6. In the square
coordinate, the distances from hexagon i0 to hexagons i1, i2,
i3, i4, i5, i6 are 1,

√
2, 1, 1,

√
2, 1, respectively, with a mean

of (
√

2 + 2)/3, and a minimum of 1. In the parity coordinate,
distances from hexagon i0 to hexagons i1, i2, i3, i4, i5, i6 are
2,

√
2,

√
2, 2,

√
2,

√
2 respectively, with a mean of (2

√
2 +

2)/3 and a minimum of
√

2. In the cube coordinate, distances
from hexagon i0 to hexagons i1, i2, i3, i4, i5, i6 are all

√
2.

Evidently, the topology ratios δ in the square, parity, and cube
coordinate are (

√
2 + 2)/3, (

√
2 + 2)/3, and 1, respectively.

It indicates that the transformation with the cube coordinate
does not lead to topology loss, in other words, does not
change the relative locations or distances among all hexagons.
However, both the square and parity coordinates result in
topology loss to some extent. Meanwhile, we can easily find
that the dimensionality of the squares/tensors transformed by
the square, parity, and cube coordinates are (2k+1)¡Á(2k+1),
(4k + 1)¡Á(2k + 1) and (2k + 1)3, respectively, in a k-circle
surrounding local hexagon map.

In summary, in terms of the topology loss, square
H-CNN = H-CNN > Cube H-CNN; in terms of feature
dimensionality, square H-CNN < Parity H-CNN < Cube
H-CNN. Clearly, the Cube H-CNN has the smallest topology
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loss and the highest feature dimensionality. The small topol-
ogy loss indicates a more explicit description of the spatial
correlations among the hexagons (which is beneficial to the
predictive performance), while a high feature dimensionality
may lead to over-fitting issues or make the training process
unstable (which is harmful to the predictive performance).

Suppose the L-length feature vector of hexagon i is S(d,t)
i ,

then the features of the n-circle surrounding local map cen-
tralized in hexagon i0 can be represented by an N × L feature
matrix X(d,t)

i = (S(d,t)
i0

, · · · , S(d,t)
iN

)T, where N is the length of
the n-circle surrounding local hexagon map vector. We then
define three mapping functions fs−vmap, f p−vmap, fc−vmap,
where fs−vmap : X(d,t)

i → X (d,t)
s,i , f p−vmap : X(d,t)

i →
X (d,t)

p,i , fc−vmap : X(d,t)
i → X (d,t)

c,i . These functions conduct
transformations from Hn

i0
to Ms,n

i0
, Mp,n

i0
, Mc,n

i0
for each column

(feature) of X(d,t)
i , thus the dimensionality of the obtained

tensors X (d,t)
s,i ,X (d,t)

p,i ,X (d,t)
c,i are Ms,n

1 × Ms,n
2 × L, M p,n

1 ×
M p,n

2 ×L and Mc,n
1 ×Mc,n

2 ×Mc,n
3 ×L, respectively. Ms,n

1 , Ms,n
2

are the lengths of the first and second dimensions of Ms,n
i0

, and
M p,n

1 , M p,n
2 are the lengths of the first and second dimensions

of Mp,n
i0

, while Mc,n
1 , Mc,n

2 , Mc,n
3 denote the first, second,

and third dimensions of Mc,n
i0

. The labels of each local map,

G(d,t)
i = (G(d,t)

i0
, · · · , G(d,t)

iN
)T with dimensionality of N × 1

can also be transformed by these three mapping functions to
tensors G(d,t)

s,i with dimensions of Ms,n
1 × Ms,n

2 ×1, G(d,t)
p,i with

dimensions of M p,n
1 × M p,n

2 × 1, and G(d,t)
c,i with dimensions

of Mc,n
1 × Mc,n

2 × Mc,n
3 × 1, respectively.

C. Training Process of 2-D/3-D H-CNN

The convolutional neural network is one of the most pow-
erful deep learning algorithms for image recognition, since
it shows great ability in capturing the hierarchical spatial
structure information. In most tasks, such as face recognition,
CNN has tensors with two spatial dimensions (three for 3-D
CNN) and one channel dimension as the input and a single
neuron as the output. In such cases, the CNN architecture usu-
ally consists of the convolutional layer, pooling layer, batch-
normalization layer, fully-connected layer, and activations. The
convolutional layer consists of several learnable filters which
are convolved across the width and height of the input tensors,
and the dot products between the filers and the input tensors
are computed and passed to the next layer. The pooling layers
are usually inserted between two convolutional layers and are
used to progressively reduce the spatial dimensionality, which
helps reduce the parameter quantities and avoid over-fitting.
The batch-normalization layer is utilized to reduce the internal
covariate shift of neural networks and avoid over-fitting by
normalizing the layer inputs for each training mini-batch. The
full-connected layers are used for flattening the 3-D tensor
(4-D tensor for 3-D CNN) to 1-D vector which is fur-
ther passed through the activations to be the output neuron.
Recently, some researchers eliminated the full-connected lay-
ers in the CNN architectures and designed map-to-map CNNs.
These map-to-map CNNs are suitable for the problems where
the inputs and outputs have the same spatial dimensions,

Fig. 3. The training process for H-CNN.

such as precipitation forecasting [9] and city-wide crowd flow
prediction [8].

Our model is an extended version of the previous
2-D/3-D map-to-map CNN. Fig. 3 illustrates the framework
of the proposed H-CNN architecture. The first layer of
H-CNN is one of the mapping function (square-mapping,
parity-mapping, or cube-mapping) which converts the input
feature matrix and label vector to 3-D tensors (4-D for
cube-mapping), i.e., X (d,t)

s,i ,X (d,t)
p,i ,X (d,t)

c,i . These tensors are
connected with several groups of 2-D convolutional layers
(3-D for cube mapping) and batch-normalization layers. The
number of channels of the first convolutional layer is equal
to the number of features of the input tensor (L), and the
number of channels in the following convolutional layers
decrease in proportion (L/2, L/4, · · · ). The last convolutional
layer is set to have only one channel, which makes the
output tensor have a consistent shape with the label tensors,
i.e., G(d,t)

s,i ,G(d,t)
p,i ,G(d,t)

c,i . With fconv referring to the hierarchi-
cal CNN architecture, the estimated labels can be represented
by

̂G(d,t)
s,i = fconv(WX (d,t)

s,i + b) (4)

where ̂G(d,t)
s,i ,X (d,t)

s,i , the estimated labels and input fea-
ture tensors based on square-mapping, can be replaced

with ̂G(d,t)
p,i ,X (d,t)

p,i (parity-mapping) and ̂G(d,t)
c,i ,X (d,t)

c,i (cube-
mapping), respectively. W and b are the weighted parameters
and intercepts.

An L2-norm regularized objective function is used for train-
ing the H-CNN. As an illustration, we employ the regularized
objective function of the Squared H-CNN in Eq. (5):

min
w,b

∥∥∥̂G(d,t)
s,i − G(d,t)

s,i

∥∥∥
2

2
+ α ‖W‖2

2 (5)

The first term of Eq. (5) minimizes the squared errors
between the estimated labels and real labels, while the second
term is an L2-norm regularization term which reduces the
model complexity and avoids over-fitting. W refers to all
weighted parameters, while α is for balancing the trade-off

between bias and variance. Note that ̂G(d,t)
s,i ,G(d,t)

s,i are replaced

with ̂G(d,t)
p,i ,G(d,t)

p,i in Parity H-CNN and with ̂G(d,t)
c,i ,G(d,t)

c,i in
Cube H-CNN, respectively.
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Fig. 4. Prediction process of the Square H-CNN.

D. Prediction: Hexagon-Based Ensemble Mechanism

With the calibrated parameters W and b, the predicted

Square H-CNN tensor centralized at hexagon i , i.e., ̂G(d,t)
s,i

can be obtained from Eq. (4). Note that each hexagon has
such a predicted tensor. With the inverse function of fs−vmap,

we can further obtain the predicted local map Ĝ
(d,t)
i from

̂G(d,t)
s,i , as shown in Eq. (6).

Ĝ
(d,t)
i = f −1

s−vmap

(
̂G(d,t)

s,i

)
(6)

where Ĝ
(d,t)
i = (G(d,t)

i0→i0
, · · · , G(d,t)

i0→iN
)T is an N-length vector

with the same size as the real labels in the local hexagon
map centralized at i , i.e., G(d,t)

i . The term Ĝ(d,t)
i→ j refers to

the supply-demand gap of hexagon j predicted by the local
hexagon map centralized at i .

A natural way to estimate the supply-demand gap value of
hexagon i is to directly use Ĝ(d,t)

i→ j . However, to strengthen
the predictive performance, we design the hexagon-based
ensemble mechanism on top of the local map-to-map predic-
tion. We estimate the final forecasted supply-demand gap in
hexagon j by estimating the mean of all possible Ĝ(d,t)

i→ j with
overlapped i , given by

Ĝ(d,t)
j = mean

({
Ĝ(d,t)

i→ j |for all overlapped i
})

(7)

To illustrate this design in detail, we use Fig. 4 for demon-
stration. Fed with the real-time features, the trained H-CNN
outputs numerous H-CNN label tensors, which are further
transformed into local hexagon maps, with the hexagons A, B,
C, W, etc. The overlapped local hexagon maps have various
predictions for hexagon W, we then predict the supply-demand
gap of hexagon W with the mean value of these overlapped
prediction values.

The hexagon-based ensemble mechanism is motivated by
the widely used ensemble algorithms, such as Random For-
est [42], AdaBoost [43], and XGBoost [44], in the domain of
machine learning, which combine the predictions of several
relatively weak learners to improve the accuracy and robust-
ness of prediction. The motivation is that the combination of

many weak learners is able to alleviate the randomness of
a single weak learner which may lead to high variance and
over-fitting issues. There are two main families of ensemble
methods: 1) averaging approaches which build various inde-
pendent weak learners and then average their predicted results;
2) boosting methods which sequentially generate weak learn-
ers and add them to the final strong learner (the weak learners
are weighted according to their predictive performance). For
example, Random Forest [42] randomly constructs a multitude
of decision trees in the training process and the final output
is found by the mean of the predictions of all individual trees
with equaled weights.

In Section V, we will justify the necessity of implement-
ing the hexagon-based ensemble mechanism via a sensitivity
analysis, where the predictive performances of three H-CNNs
are compared in the case with or without the hexagon-based
ensemble mechanism. The experiment results show that the
predictive performances of three H-CNNs are significantly
improved after this mechanism being applied.

V. EXPERIMENTS AND DISCUSSION

In this section, we present our experimental results on
the real-world data provided by Didi. We first describe the
dataset in Section V.A and then provide the technical settings
of the proposed models in Section V.B. Then, Section V.C
compares the predictive performances measured by RMSE,
MAE, and MAPE of the H-CNNs and benchmark algorithms.
Finally, we discuss the necessity to implement hexagon-based
ensemble mechanism in H-CNNs.

A. Data Description

The dataset, provided by the Bigdata Research Lab of Didi,
is comprised of the order table, the trajectory data of vacant
ride-sourcing cars, the weather data, and traffic condition data.
The order table contains 4,143,787 orders collected from the
downtown area of Guangzhou, China, from March 29 to
April 18, 2017 (three weeks). The investigated area, with
longitude between 113.25◦E and 113.40◦E and latitudes
between 23.05◦N and 23.15◦N , is partitioned into numerous
hexagons with side lengths of around 660 m based on the Didi
hexagon system, which is an encrypted form of the hexagon
global discrete grid system. We only investigate the hexagons
with daily requesting orders larger than 100 in this paper,
and the 130 eligible hexagons are shown in Fig. 5(a). Each
day is partitioned into 48 time intervals (each with 30 min).
With these rules, the orders are aggregated by time and
hexagon based on the starting points of the orders. The order
table contains the demand-related features, matching-related
features, and the label, i.e., the supply-demand gap itself.
Fig. 5(b) illustrates the frequency of the supply-demand gap,
which approximately follows a power-law shape probabilistic
density function.

Fig. 5(c) illustrates the sum of the demand/supply-demand
gaps of all hexagons in different time intervals, where it can be
seen that the demand has a regular two-peak day-to-day pattern
while the peak of the supply-demand gap occurs irregularly
in the AM or PM peak. Fig. 5(d) shows the spectrogram
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Fig. 5. Empirical data features. (a) Investigated area. (b) Supply-demand gap
distribution. (c) Sum of all hexagons. (d) Spectrogram. (e) Supply-demand gap
in three nearby hexagons. (f) Mean of correlation.

of the demand and supply-demand gap, where the horizontal
axis refers to the frequency and the vertical axis denotes the
amplitude. The demand has a larger main amplitude (one cycle
per day) and its amplitudes are more centralized, implying
that it has stronger periodicity than the supply-demand gap.
By visualizing the supply-demand gap of the neighboring
hexagons (e.g., hexagons 20, 27, and 37 in Fig. 5(a)), we find
that the trend of the demand-supply gap is similar in the
neighboring hexagons (see Fig. 5(e)). Furthermore, pair-to-
pair correlations of the demand and demand-supply gap time-
series of all the hexagons are calculated and then averaged
in various groups of Euclidean distances from 0 to 14 km
with steps of 2 km (see Fig. 5(f)). It is observed that the
demand has the higher correlations because the demand time
series in different hexagons have similar periodicity and day-
to-day patterns. While the correlations of demand in different
ranges of distance are similar, the correlations of the supply-
demand gap drop rapidly with the increase in the Euclidean
distance. It proves that the supply-demand gap in one hexagon
has stronger connections with nearby hexagons than faraway
hexagons. Therefore, utilizing the local spatial information for
predicting the supply-demand gap is intuitive and necessary.

The other three datasets are also obtained during the
same period in the same area and aggregated in the same
way as the ride order table. The trajectory data of vacant

ride-sourcing cars provide supply-related features, such as the
number of vacant drivers passing through one hexagon during
a particular time interval, while the weather data provide
30-min aggregated weather states, precipitation, etc. The traffic
condition dataset reports the traffic condition-related features,
such as the inflow/outflow averaged speed of a certain hexagon
during a time interval.

For each hexagon, we generate a two-circle surround-
ing hexagon local map by selecting two-circle surrounding
hexagons (e.g., the red hexagons around hexagon 59 in
Fig. 5(a)). For the hexagons on the border where there are
no nearby hexagons in some directions (e.g., hexagon 46 in
Fig. 5(a)), we create virtual hexagons whose labels and fea-
tures are filled with 0.

The features and labels are split into a training set and a
test set. The training set contains two-weeks of data between
March 29 and April 11, 2017, while the one-week test set
is from April 12 to April 18, 2017. Remembering that the
hexagon local map (sample) is constructed for each hexagon
(130 hexagons in total) and the time slot is 30 min, then
we can obtain 130 × 48 × 14 = 87360 training samples
and 130 × 48 × 7 = 43680 test samples. Note that spatio-
temporal forecasting problems [8], [13] commonly split the
time-series dataset into a training set followed by a test set,
rather than n-splits cross-validation which is widely used in
other machine learning problems. The reason is that the time-
series data are temporally correlated, and one can only use
the past features for predicting the future labels in order to
avoid utilizing future information. Hence, the time of the test
set is required to be later than that of the training set. Due
to the data limitation (only three-week data was accessible
in this study), here we only use the first two-week of data
for training and the last-week data for testing. Four metrics,
i.e., RMSE, MAE, MAPE, and the Pearson Correlation, are
utilized to evaluate the predictive performance of the proposed
models and benchmark algorithms.

B. Models’ Setting

In the architecture of the Square H-CNN and Parity
H-CNN, we use four stacked 2-D convolutional layers and
each one is inserted with a batch-normalization layer. For
Cube H-CNN, 3-D convolutional layers are used. The chan-
nel dimensions of the first, second, and third, and fourth
convolutional layers are L, L/2, L/4, and 1. We select the
rectified linear function (Relu) as the activation function for
each convolutional layer (including the output convolutional
layer). The optimization algorithm is the Adaptive Moment
Estimation (Adam), which is an efficient and robust mini-
batch gradient descent approach. The batch size is set to be
64 and the training epochs are 30. Both the features and labels
(supply-demand gap) are scaled by max-min normalization to
[0, 1].

The experiment platform is a server with 20 GPU cores
(Intel(R) Xeon(R)) CPU E5-26030 v4 @ 2.20GHz), 251 GB
RAM, and one GPU (NVIDIA UNIX x86-64 Kernel Module
375.66). The operating system of the server is CentOS Linux
release 7.2.1511 (Core). The proposed models and baselines
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are implemented with Python 2.7.5 with TensorFlow, scikit-
learn, and XGBoost [44].

C. Model Comparisons

This subsection describes the predictive performance of the
test set and the training/test time of the three kinds of H-CNNs,
recalling that we use a hexagon-based ensemble mechanism to
strengthen the predictive performance of H-CNNs. In this part,
we compare RMSE of the three H-CNNs with and without
the hexagon-based ensemble mechanism. H-CNNs without
the hexagon-based ensemble mechanism directly predict the
supply-demand gap in (d, t, j) with the features of hexagon
j ’s two-circle surrounding local hexagon map H2

i . In other
words, Ĝ(d,t)

i = Ĝ(d,t)
j→ j is implemented instead of Eq. (7).

Since the supply-demand gap prediction is essentially a
regression problem, we compare our models with several
classical or state-of-the-art benchmark regressors. To ensure
fairness, we make sure that the benchmark algorithms use
the same feature information as our models. Specifically, for
predicting the supply-demand gap in (d, t, i), each benchmark
algorithm uses features obtained from both hexagon i and its
two-circle surrounding hexagons Hn

i as its input. The intro-
ductions and fine-tuned settings of the benchmark algorithms
are shown as follows:

1) LASSO (Least Absolute Shrinkage and Selection Oper-
ator) [45]: LASSO adds an L1-norm regularization term to
the linear regression, which penalizes the absolute size of the
regression coefficients. The parameter α which measures the
trade-off between empirical errors and mode complexity is
tuned from 0.5 to 5 with a step of 0.5.

2) RF (Random Forest) [42]: RF is a classical ensemble
algorithm which builds up various decision trees, each of
which is trained with a group of bootstrapped samples. The
final output of RF is estimated by the mean of the outputs of
all the trees. The ratio of the maximum number of features for
training an individual tree to the number of features is tuned
from 0.2 to 0.8 with a step of 0.1. Number of trees is tuned
from 20 to 200 with a step of 20.

3) MLP (Multi-Layer Perception) [46]: MLP is also called
the artificial neural network, and is a basic neural network
trained with the back-propagation algorithm. The MLP is
tuned with the number of hidden layers (from 1 to 5 with a step
of 1), the number of hidden neurons (from 256 to 1024 with a
step of 128), and learning rate (0.0001, 0.001, and 0.01). The
Relu activation is used for all hidden units while the model is
trained with Adam optimizer.

4) XGB (XGBoost) [44]: XGB is a scalable, portable and
distributed library with the gradient boosting decision tree
(GBDT) as its main algorithm. XGB has gained high popular-
ity and attention since its release as it shows great performance
on a broad range of machine learning competitions, such as
Kaggle (www.kaggle.com). The maximum depth of a tree is
tuned from 3 to 8 with a step of 1, the step size shrinkage is
tuned from 0.1 to 0.9 with a step of 0.1, while the subsampling
ratio is tuned from 0.1 to 0.9 with a step of 0.1.

For the three H-CNNs, we tune two hyper-parameters:
the number of convolutional layers (from 1 to 5 with steps

TABLE I

COMPARISON OF THE MODELS’ PERFORMANCE

of 1) and the learning rate (from 0.0002 to 0.001 with steps
of 0.0002). To assess the consistency of the performance of the
models, each model is trained and tested for 10 runs with the
best parameters, and then the means of the RMSE, MAE, and
Pearson Correlation can be calculated, as shown in Table I.
The means of the training and test times are also recorded.
It can be observed that the Square H-CNN, Parity H-CNN and
Cube H-CNN combined with ensemble mechanism outper-
form the best benchmark algorithm (XGB) by 6.5%, 8.0%, and
6.5% respectively, in terms of RMSE. T-tests are also under-
taken to compare the RMSE of the models, and the results
(t-statistics and p-values) are displayed in Table II. Note that
a negative t-statistic (such as -77.0 when comparing Square
H-CNN to MLP) with a p-value (0.00 in this example) less
than 0.05 indicates that the RMSE of one model (Square
H-CNN in this example) is significantly smaller than that of
another model (MLP in this example) at the significant level
of 0.05. Clearly, the results show that the proposed H-CNN
models significantly outperform all the benchmark algorithms.
The possible reason is that the H-CNNs well capture the
spatial-temporal characteristics of the features. Many previous
studies in the domain of spatio-temporal prediction have
realized the importance of spatio-temporal characteristics and
hence designed special neural network structures to capture
them [1], [4], [8]. Especially, the family of convolutional
neural networks has shown outstanding performance on well
characterizing the spatio-temporal features in a broad range
of implementations, such as crowd flow prediction [8], pre-
cipitation nowcasting [9], passenger demand prediction [13],
etc.

Further, Fig. 6 provides the detailed trends of MAPE under
different thresholds of the models. The horizontal axis refers
the supply-demand gap threshold, and the vertical axis means
the MAPE of samples with a real supply-demand gap greater
than the threshold. Clearly, the three H-CNNs outperform the
benchmarks in conditions with either high or low supply-
demand gaps. The Parity H-CNN is the best model which
not only has the lowest RMSE, but also reports low MAPE in
samples with large supply-demand gaps (see Fig. 6). It indi-
cates that the Parity H-CNN has a better prediction accuracy
for the samples with larger supply-demand gaps. Precise pre-
dictions on the hexagons with large supply-demand gaps are
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TABLE II

T-STATISTICS (P-VALUES) FOR COMPARING RMSE OF THE MODELS

Fig. 6. MAPE of models under thresholds.

major concerns of the platform, which can dispatch/incentivize
vacant drivers to these hexagons.

Fig. 7 illustrates a one-week trend of the predicted supply-
demand gap (by three H-CNNs and XGB) and the ground
truth in one selected hexagon. It can be observed that the
models are comparable when predicting low supply-demand
gaps, but H-CNNs has a better prediction for the high supply-
demand gap and captures its sudden increase more pow-
erfully. Fig. 8 demonstrates the spatial distributions of the
mean supply-demand gap (Fig. 8(a)) and the RMSE of the
predicted Parity H-CNN (Fig. 8(b)). It is not surprising that
the zones with larger mean supply-demand gap have larger
predicted errors. Fig. 9(a) presents the relation between the
mean predicted values in each hexagon and its mean ground
truth, indicating that the model can well estimate the one-
week mean (in the test set) of the supply-demand gap of each
hexagon. Fig. 9(b) illustrates the relationship between RMSE
in each hexagon and the standard deviation of its supply-
demand gap, showing that the forecasting errors (RMSE) are

Fig. 7. Predicted supply-demand gap and ground truth in one hexagon.

Fig. 8. Spatial distributions. (a) Mean of supply-demand gap. (b) Mean of
RMSE.

largely proportional to the variance (standard deviation) of the
supply-demand gap.

D. Effects of Hexagon-Based Ensemble Mechanism

We further discuss the effects of implementing the hexagon-
based ensemble mechanism on top of the H-CNNs. It is clearly
shown in Table I that Square H-CNN, Parity H-CNN, and
Cube H-CNN with the hexagon-based ensemble mechanism
outperform their variants without the hexagon-based ensemble
mechanism by 5.7%, 4.0%, and 2.3% in terms of RMSE,
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Fig. 9. Hexagons’ mean prediction, ground truth, and RMSE. (a) Prediction
v.s. ground truth. (b) RMSE v.s. standard deviation.

respectively. The results in Table II further verify that the
hexagon-based ensemble mechanism significantly improves
the predictive performance of the three H-CNNs. These results
are unsurprising, since using single prediction is commonly
random and unstable, while aggregating the prediction of
multiple predictors usually improves the prediction accuracy
and robustness. Similar phenomena can be widely observed in
ensemble algorithms, such as GBDT and RF, which perform
better and are more robust than traditional decision trees.

Furthermore, our design for the combination of the local
hexagon map and hexagon-based ensemble mechanism pro-
vides more samples and reduces feature dimensionality than
the commonly used global map design. For example, for
a 2-week training set with hundreds of hexagons/squares,
the global map design needs a CNN with huge dimensionality
(130 hexagons) while the number of samples is only 7 (days)
× 2 (weeks) × 48 (30-min time interval in each day) = 672
(suppose the time interval to be 30 min). However, in our
design, the dimensionality is restricted to one local hexagon
map (with 19 hexagons), while the sample size is improved
to 130 (local maps/hexagons) × 7 (days) × 2 (weeks) × 48
(30-min time interval in each day) = 87360 samples.

VI. CONCLUSIONS

In this paper, we describe a hexagon-based framework for
predicting the supply-demand gap of ride-sourcing services.
Three H-CNNs (Square, Parity, and Cube H-CNN) are pro-
posed to explore the spatio-temporal characteristics and depen-
dencies of the supply/demand on top of the hexagon-based
region partitions. Furthermore, a hexagon-based ensemble
mechanism is developed to further enhance the predictive per-
formance of H-CNNs. Validated by real-world data provided
by Didi, we find that our models significantly outperform
the best benchmark algorithm and, specifically, Parity H-CNN
with an ensemble mechanism achieves the best predictive per-
formance. It is also reported that the hexagon-based ensemble
mechanism significantly improves the predictive accuracy of
the three H-CNNs.

This study makes the first initial attempt to combine
hexagon region partition with spatio-temporal deep learning
approaches. The proposed hexagon-based CNNs are easy to
be implemented and are compatible with the state-of-the-art
deep learning framework/library, such as TensorFlow. As the
hexagon-based partition is superior to the simple squared par-
tition in some aspects and has increasingly attracted attention

from various institutes and industry sectors, the proposed
methods could find more applications in the domain of urban
computing and transportation, such as city-wide traffic flow
prediction, human mobility analysis, commuters’ OD matrix
estimation, etc.

This paper has several limitations. Firstly, although the
experiments on the ride-sourcing dataset show that the
H-CNNs significantly outperform the benchmark algorithms,
no rigorous theoretical guarantee can be provided to prove
the superiority of our models, due to the complex nature
of convolutional neural networks. This remains to be solved
in future studies. Secondly, we analyze the advantages and
disadvantages of three H-CNNs from the aspects of topology
loss and dimensionality and show that the Parity H-CNN
achieves the best performance in the experiments. However,
due to the limitation of the available data resources, the three-
week ride-sourcing datasets in this paper are not adequate to
theoretically or empirically evaluate and compare the three
H-CNNs during more time periods in other cities. Therefore,
more extensive experiments should be conducted to implement
and verify the proposed frameworks on other datasets, for
other spatio-temporal forecasting problems, such as traffic
flow prediction, traffic emission forecasting, etc., in the future
studies.
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